期刊论文详细信息
BMC Medical Physics
Dose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy – applied to prostate proton treatments
Anders Ahnesjö1  Nina Tilly2  David Tilly2 
[1]Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
[2]Elekta Instruments AB, Uppsala, 753 21, Sweden
关键词: Protons;    Non-rigid image registration;    Deformable image registration;    Dose accumulation accuracy;    Dose accumulation;    Dose mapping;    Dose tracking;    Adaptive radiotherapy;    Radiotherapy;   
Others  :  834365
DOI  :  10.1186/1756-6649-13-2
 received in 2012-09-27, accepted in 2013-02-27,  发布年份 2013
PDF
【 摘 要 】

Background

Calculation of accumulated dose in fractionated radiotherapy based on spatial mapping of the dose points generally requires deformable image registration (DIR). The accuracy of the accumulated dose thus depends heavily on the DIR quality. This motivates investigations of how the registration uncertainty influences dose planning objectives and treatment outcome predictions.

A framework was developed where the dose mapping can be associated with a variable known uncertainty to simulate the DIR uncertainties in a clinical workflow. The framework enabled us to study the dependence of dose planning metrics, and the predicted treatment outcome, on the DIR uncertainty. The additional planning margin needed to compensate for the dose mapping uncertainties can also be determined. We applied the simulation framework to a hypofractionated proton treatment of the prostate using two different scanning beam spot sizes to also study the dose mapping sensitivity to penumbra widths.

Results

The planning parameter most sensitive to the DIR uncertainty was found to be the target D95. We found that the registration mean absolute error needs to be ≤0.20 cm to obtain an uncertainty better than 3% of the calculated D95 for intermediate sized penumbras. Use of larger margins in constructing PTV from CTV relaxed the registration uncertainty requirements to the cost of increased dose burdens to the surrounding organs at risk.

Conclusions

The DIR uncertainty requirements should be considered in an adaptive radiotherapy workflow since this uncertainty can have significant impact on the accumulated dose. The simulation framework enabled quantification of the accuracy requirement for DIR algorithms to provide satisfactory clinical accuracy in the accumulated dose.

【 授权许可】

   
2013 Tilly et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715062822822.pdf 1065KB PDF download
Figure 8. 134KB Image download
Figure 7. 38KB Image download
Figure 6. 66KB Image download
Figure 5. 66KB Image download
Figure 4. 71KB Image download
20150324021501938.pdf 21461KB PDF download
Figure 2. 83KB Image download
Figure 1. 104KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Yan D, Jaffray DA, Wong JW: A model to accumulate fractionated dose in a deforming organ. Int J Radiat Oncol Biol Phys 1999, 44:665-675.
  • [2]Schultheiss TE, Tome WA, Orton CG: It is not appropriate to “deform” dose along with deformable image registration in adaptive radiotherapy. Med Phys 2012, 39:6531-6533.
  • [3]Hill DL, Batchelor PG, Holden M, Hawkes DJ: Medical image registration. Phys Med Biol 2001, 46:R1-R45.
  • [4]Oliveira FP, Tavares JM: Medical image registration: a review. Comput Methods Biomech Biomed Engin 2012, 1-21.
  • [5]Brock K: Results of a Multi-Institution Deformable Registration Accuracy Study (MIDRAS). Int J Radiat Oncol Biol Phys 2009, 76:583-596.
  • [6]Kashani R, Hub M, Balter J, Kessler M, Dong L, Zhang L, Xing L, Xie Y, Hawkes D, Schnabel J, et al.: Objective assessment of deformable image registration in radiotherapy: a multi-institution study. Med Phys 2008, 35:5944-5953.
  • [7]Rosu M, Chetty IJ, Balter JM, Kessler ML, McShan DL, Ten Haken RK: Dose reconstruction in deforming lung anatomy: dose grid size effects and clinical implications. Med Phys 2005, 32:2487-2495.
  • [8]Salguero FJ, Saleh-Sayah NK, Yan C, Siebers JV: Estimation of three-dimensional intrinsic dosimetric uncertainties resulting from using deformable image registration for dose mapping. Med Phys 2011, 38:343-353.
  • [9]Yan C, Hugo G, Salguero FJ, Saleh-Sayah N, Weiss E, Sleeman WC, Siebers JV: A method to evaluate dose errors introduced by dose mapping processes for mass conserving deformations. Med Phys 2012, 39:2119-2128.
  • [10]Hub M, Thieke C, Kessler ML, Karger CP: A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration. Med Phys 2012, 39:2186-2192.
  • [11]Murphy MJ, Salguero FJ, Siebers JV, Staub D, Vaman C: A method to estimate the effect of deformable image registration uncertainties on daily dose mapping. Med Phys 2012, 39:573-580.
  • [12]Risholm P, Balter J, Wells WM: Estimation of delivered dose in radiotherapy: the influence of registration uncertainty. Med Image Comput Comput Assist Interv 2011, 14:548-555.
  • [13]Wen N, Glide-Hurst C, Nurushev T, Xing L, Kim J, Zhong H, Liu D, Liu M, Burmeister J, Movsas B, Chetty IJ: Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment. Phys Med Biol 2012, 57:5361-5379.
  • [14]Van Herk M, Remeijer P, Rasch C, Lebesque JV: The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 2000, 47:1121-1135.
  • [15]Fowler JF: The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 1989, 62:679-694.
  • [16]Bortfeld T, Jokivarsi K, Goitein M, Kung J, Jiang SB: Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. Phys Med Biol 2002, 47:2203-2220.
  • [17]Brahme A: Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 1984, 23:379-391.
  • [18]Nahum AE, Tait DM: Maximising control by customized dose prescription for pelvic tumours. In Advanced Radiation Therapy: Tumour Response Monitoring and Treatmenr Planning. Edited by Breit A. Heidelberg: Springer; 1992:425-431.
  • [19]Lyman JT: Complication probability as assessed from dose-volume histograms. Radiat Res Suppl 1985, 8:S13-19.
  • [20]Burman C, Kutcher G, Emami B, Goitein M: Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 1991, 21:123-135.
  • [21]Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991, 21:109-122.
  • [22]Niemierko A: Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 1997, 24:103-110.
  • [23]Meijer GJ, Van den Brink M, Hoogeman MS, Meinders J, Lebesque JV: Dose-wall histograms and normalized dose-surface histograms for the rectum: a new method to analyze the dose distribution over the rectum in conformal radiotherapy. Int J Radiat Oncol Biol Phys 1999, 45:1073-1080.
  • [24]Byrne TE: A review of prostate motion with considerations for the treatment of prostate cancer. Med Dosim 2005, 30:155-161.
  • [25]Cheung R, Tucker SL, Lee AK, De Crevoisier R, Dong L, Kamat A, Pisters L, Kuban D: Dose–response characteristics of low- and intermediate-risk prostate cancer treated with external beam radiotherapy. Int J Radiat Oncol Biol Phys 2005, 61:993-1002.
  • [26]Ritter M: Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer. Semin Radiat Oncol 2008, 18:249-256.
  • [27]Isacsson U, Nilsson K, Asplund S, Morhed E, Montelius A, Turesson I: A method to separate the rectum from the prostate during proton beam radiotherapy of prostate cancer patients. Acta Oncol 2010, 49:500-505.
  • [28]Zavgorodni S: The impact of inter-fraction dose variations on biological equivalent dose (BED): the concept of equivalent constant dose. Phys Med Biol 2004, 49:5333-5345.
  • [29]Bortfeld T: An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys 1997, 24:2024-2033.
  • [30]Russell KR, Isacsson U, Saxner M, Ahnesjo A, Montelius A, Grusell E, Dahlgren CV, Lorin S, Glimelius B: Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams. Phys Med Biol 2000, 45:9-27.
  • [31]Kimstrand P, Traneus E, Ahnesjo A, Grusell E, Glimelius B, Tilly N: A beam source model for scanned proton beams. Phys Med Biol 2007, 52:3151-3168.
  • [32]Grevillot L, Bertrand D, Dessy F, Freud N, Sarrut D: A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4. Phys Med Biol 2011, 56:5203-5219.
  • [33]Jaffray DA, Lindsay PE, Brock KK, Deasy JO, Tome WA: Accurate accumulation of dose for improved understanding of radiation effects in normal tissue. Int J Radiat Oncol Biol Phys 2010, 76:S135-139.
  • [34]Murphy K, Van Ginneken B, Reinhardt J, Kabus S, Ding K, Deng X, Cao K, Du K, Christensen G, Garcia V, et al.: Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans Med Imaging 2011, 30:1901-1920.
  文献评价指标  
  下载次数:81次 浏览次数:29次