期刊论文详细信息
BMC Genomics
Analysis of the early heterocyst Cys-proteome in the multicellular cyanobacterium Nostoc punctiforme reveals novel insights into the division of labor within diazotrophic filaments
Karin Stensjö2  Margareta Ramström1  Gustaf Sandh2 
[1]Analytical Chemistry, Department of Chemistry - Biomedical Center, Science for Life Laboratory, Box 599, SE-751 24 Uppsala, Sweden
[2]Microbial Chemistry, Department of Chemistry - Ångström Laboratory, Science for Life Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
关键词: Quantitative proteomics;    Thiols;    ICAT;    Cys Proteome;    Heterocyst;    Cell differentiation;    Nitrogen fixation;    Cyanobacteria;   
Others  :  1089828
DOI  :  10.1186/1471-2164-15-1064
 received in 2014-03-11, accepted in 2014-11-12,  发布年份 2014
PDF
【 摘 要 】

Background

In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts.

Results

Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme.

Conclusions

The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments as compared to steady-state cultures. Therefore we conclude that by using our approach we are able to analyze a synchronized fraction of newly formed heterocysts, which enabled a better detection of proteins involved in the heterocyst specific physiology.

【 授权许可】

   
2014 Sandh et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128152242736.pdf 978KB PDF download
Figure 3. 35KB Image download
Figure 2. 64KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R: An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 2001, 70:85-106.
  • [2]Meeks JC, Campbell EL, Summers ML, Wong FC: Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch Microbiol 2002, 178:395-403.
  • [3]Fay P, Stewart WD, Walsby AE, Fogg GE: Is the heterocyst the site of nitrogen fixation in blue-green algae? Nature 1968, 220:810-812.
  • [4]Wolk CP: Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J Bacteriol 1968, 96:2138-2143.
  • [5]Flores E, Herrero A: Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 2010, 8:39-50.
  • [6]Kumar K, Mella-Herrera RA, Golden JW: Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2010, 2:a000315.
  • [7]Ow SY, Noirel J, Cardona T, Taton A, Lindblad P, Stensjö K, Wright PC: Quantitative overview of N2 fixation in Nostoc punctiforme ATCC 29133 through cellular enrichments and iTRAQ shotgun proteomics. J Proteome Res 2009, 8:187-198.
  • [8]Wolk CP, Ernst A, Elhai J: Heterocyst Metabolism and Development. In The Molecular Biology of Cyanobacteria. Edited by Bryant DA. Boston, MA: Kluwer Academic Publishers; 1994:769-823.
  • [9]Burris RH: Nitrogenases. J Biol Chem 1991, 266:9339-9342.
  • [10]Ehira S, Ohmori M, Sato N: Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 2003, 10:97-113.
  • [11]Ehira S, Ohmori M: NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 2006, 59:1692-1703.
  • [12]Christman HD, Campbell EL, Meeks JC: Global transcription profiles of the nitrogen stress response resulting in heterocyst or hormogonium development in Nostoc punctiforme. J Bacteriol 2011, 193:6874-6886.
  • [13]Flaherty BL, Van Nieuwerburgh F, Head SR, Golden JW: Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. Strain PCC 7120 to combined-nitrogen deprivation. BMC Genomics 2011, 12:332. BioMed Central Full Text
  • [14]Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM: Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci U S A 2011, 108:20130-20135.
  • [15]Park JJ, Lechno-Yossef S, Wolk CP, Vieille C: Cell-specific gene expression in Anabaena variabilis grown phototrophically, mixotrophically, and heterotrophically. BMC Genomics 2013, 14:759. BioMed Central Full Text
  • [16]Ekman M, Tollbäck P, Klint J, Bergman B: Protein expression profiles in an endosymbiotic cyanobacterium revealed by a proteomic approach. Mol Plant Microbe Interact 2006, 19:1251-1261.
  • [17]Ekman M, Ow SY, Holmqvist M, Zhang X, van Wagenen J, Wright PC, Stensjö K: Metabolic adaptations in a H2 producing heterocyst-forming cyanobacterium: potentials and implications for biological engineering. J Proteome Res 2011, 10:1772-1784.
  • [18]Ow SY, Cardona T, Taton A, Magnuson A, Lindblad P, Stensjö K, Wright PC: Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags. J Proteome Res 2008, 7:1615-1628.
  • [19]Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U: Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 2008, 105:8197-8202.
  • [20]Brandes N, Reichmann D, Tienson H, Leichert LI, Jakob U: Using quantitative redox proteomics to dissect the yeast redoxome. J Biol Chem 2011, 286:41893-41903.
  • [21]Sadler NC, Melnicki MR, Serres MH, Merkley ED, Chrisler WB, Hill EA, Romine MF, Kim S, Zink EM, Datta S, Smith RD, Beliaev AS, Konopka A, Wright AT: Live cell chemical profiling of temporal redox dynamics in a photoautotrophic cyanobacterium. ACS Chem Biol 2013. [Epub ahead of print]
  • [22]McDonagh B, Domínguez-Martín MA, Gómez-Baena G, López-Lozano A, Diez J, Bárcena JA, García Fernández JM: Nitrogen starvation induces extensive changes in the redox proteome of Prochlorococcus sp. strain SS120. Environ Microbiol Rep 2012, 4:257-267.
  • [23]Qu J, Jusko WJ, Straubinger RM: Utility of cleavable isotope-coded affinity-tagged reagents for quantification of low-copy proteins induced by methylprednisolone using liquid chromatography/tandem mass spectrometry. Anal Chem 2006, 78:4543-4552.
  • [24]Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999, 17:994-999.
  • [25]Sethuraman M, McComb ME, Huang H, Huang S, Heibeck T, Costello CE, Cohen RA: Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 2004, 3:1228-1233.
  • [26]Sethuraman M, Clavreul N, Huang H, McComb ME, Costello CE, Cohen RA: Quantification of oxidative posttranslational modifications of cysteine thiols of p21ras associated with redox modulation of activity using isotope-coded affinity tags and mass spectrometry. Free Radic Biol Med 2006, 42:823-829.
  • [27]Campbell EL, Summers ML, Christman H, Martin ME, Meeks JC: Global gene expression patterns of Nostoc punctiforme in steady-state dinitrogen-grown heterocyst-containing cultures and at single time points during the differentiation of akinetes and hormogonia. J Bacteriol 2007, 189:5247-5256.
  • [28]Campbell EL, Christman H, Meeks JC: DNA microarray comparisons of plant factor- and nitrogen deprivation-induced hormogonia reveal decision-making transcriptional regulation patterns in Nostoc punctiforme. J Bacteriol 2008, 190:7382-7391.
  • [29]Gillespie JJ, Wattam AR, Cammer SA, Gabbard JL, Shukla MP, Dalay O, Driscoll T, Hix D, Mane SP, Mao C, Nordberg EK, Scott M, Schulman JR, Snyder EE, Sullivan DE, Wang C, Warren A, Williams KP, Xue T, Yoo HS, Zhang C, Zhang Y, Will R, Kenyon RW, Sobral BW: PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect Immun 2011, 79:4286-4298.
  • [30]Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS: PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26:1608-1615.
  • [31]Brum IJB, Martins-de-Souza D, Smolka MB, Novello JC, Galembeck E: Web Based Theoretical Protein pI, MW and 2DE Map. J Comput Sci Syst Biol 2009, 2:093-096.
  • [32]Stensjö K, Ow SY, Barrios-Llerena ME, Lindblad P, Wright PC: An iTRAQ-based quantitative analysis to elaborate the proteomic response of Nostoc sp. PCC 7120 under N2 fixing conditions. J Proteome Res 2007, 6:621-635.
  • [33]Ow SY, Wright PC: Current trends in high throughput proteomics in cyanobacteria. FEBS Lett 2009, 583:1744-1752.
  • [34]Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC: iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 2009, 8:5347-5355.
  • [35]Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS: Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 2010, 9:1885-1897.
  • [36]Ow SY, Salim M, Noirel J, Evans C, Wright PC: Minimising iTRAQ ratio compression through understanding LC-MS elution dependence and high-resolution HILIC fractionation. Proteomics 2011, 11:2341-2346.
  • [37]Herrero A, Muro-Pastor AM, Flores E: Nitrogen control in cyanobacteria. J Bacteriol 2001, 183:411-425.
  • [38]Murry MA, Wolk CP: Evidence that the barrier to the penetration of oxygen into heterocysts depends upon two layers of the cell envelope. Arch Microbiol 1989, 151:469-474.
  • [39]Awai K, Lechno-Yossef S, Wolk CP: Heterocyst Envelope Glycolipids. In Lipids in Photosynthesis: Essential and Regulatory Functions. Edited by Wada M. Dordrecht, The Netherlands: Springer Science+Business Media B.V; 2009:179-202.
  • [40]Nicolaisen K, Hahn A, Schleiff E: The cell wall in heterocyst formation by Anabaena sp. PCC 7120. J Basic Microbiol 2009, 49:5-24.
  • [41]Fiedler G, Arnold M, Hannus S, Maldener I: The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 1998, 27:1193-1202.
  • [42]Awai K, Wolk CP: Identification of the glycosyl transferase required for synthesis of the principal glycolipid characteristic of heterocysts of Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 2007, 266:98-102.
  • [43]Ramírez ME, Hebbar PB, Zhou R, Wolk CP, Curtis SE: Anabaena sp. strain PCC 7120 gene devH is required for synthesis of the heterocyst glycolipid layer. J Bacteriol 2005, 187:2326-2331.
  • [44]Huang G, Fan Q, Lechno-Yossef S, Wojciuch E, Wolk CP, Kaneko T, Tabata S: Clustered genes required for the synthesis of heterocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J Bacteriol 2005, 187:1114-1123.
  • [45]Wang Y, Lechno-Yossef S, Gong Y, Fan Q, Wolk CP, Xu X: Predicted glycosyl transferase genes located outside the HEP island are required for formation of heterocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J Bacteriol 2007, 189:5372-5378.
  • [46]Pernil R, Herrero A, Flores E: Catabolic function of compartmentalized alanine dehydrogenase in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2010, 192:5165-5172.
  • [47]Jüttner F: 14C-labeled metabolites in heterocysts and vegetative cells of Anabaena cylindrica filaments and their presumptive function as transport vehicles of organic carbon and nitrogen. J Bacteriol 1983, 155:628-633.
  • [48]Hawkesford MJ, Houchins JP, Hind G: Electron Transfer Around Photosystem I in Cyanobacterial Heterocyst Membranes. In Advances in Photosynthesis Research. Edited by Martinus Nijhoff/Dr W. Junk. The Hague: Springer Netherlands; 1984:671-674.
  • [49]Ferimazova N, Felcmanová K, Setlíková E, Küpper H, Maldener I, Hauska G, Sedivá B, Prášil O: Regulation of photosynthesis during heterocyst differentiation in Anabaena sp. strain PCC 7120 investigated in vivo at single-cell level by chlorophyll fluorescence kinetic microscopy. Photosynth Res 2013, 116:79-91.
  • [50]Kumazaki S, Akari M, Hasegawa M: Transformation of thylakoid membranes during differentiation from vegetative cell into heterocyst visualized by microscopic spectral imaging. Plant Physiol 2013, 161:1321-1333.
  • [51]Ashby MK, Mullineaux CW: Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II. FEMS Microbiol Lett 1999, 181:253-260.
  • [52]Takai N, Nakajima M, Oyama T, Kito R, Sugita C, Sugita M, Kondo T, Iwasaki H: A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci U S A 2006, 103:12109-12114.
  • [53]Hanaoka M, Takai N, Hosokawa N, Fujiwara M, Akimoto Y, Kobori N, Iwasaki H, Kondo T, Tanaka K: RpaB, another response regulator operating circadian clock-dependent transcriptional regulation in Synechococcus elongatus PCC 7942. J Biol Chem 2012, 287:26321-26327.
  • [54]Markson JS, Piechura JR, Puszynska AM, O’Shea EK: Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell 2013, 155:1396-1408.
  • [55]Bruschi M, Guerlesquin F: Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev 1988, 4:155-175.
  • [56]Fukuyama K: Structure and function of plant-type ferredoxins. Photosynth Res 2004, 81:289-301.
  • [57]Masepohl B, Schölisch K, Görlitz K, Kutzki C, Bohme H: The heterocyst-specific fdxH gene product of the cyanobacterium Anabaena sp. PCC 7120 is important but not essential for nitrogen fixation. Mol Gen Genet 1997, 253:770-776.
  • [58]Jones KM, Buikema WJ, Haselkorn R: Heterocyst-specific expression of patB, a gene required for nitrogen fixation in Anabaena sp. strain PCC 7120. J Bacteriol 2003, 185:2306-2314.
  • [59]Winkenbach F, Wolk CP: Activities of enzymes of the oxidative and the reductive pentose phosphate pathways in heterocysts of a blue-green alga. Plant Physiol 1973, 52:480-483.
  • [60]Valladares A, Maldener I, Muro-Pastor AM, Flores E, Herrero A: Heterocyst development and diazotrophic metabolism in terminal respiratory oxidase mutants of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2007, 189:4425-4430.
  • [61]Curatti L, Flores E, Salerno G: Sucrose is involved in the diazotrophic metabolism of the heterocyst-forming cyanobacterium Anabaena sp. FEBS Lett 2002, 513:175-178.
  • [62]Curatti L, Giarrocco LE, Cumino AC, Salerno GL: Sucrose synthase is involved in the conversion of sucrose to polysaccharides in filamentous nitrogen-fixing cyanobacteria. Planta 2008, 228:617-625.
  • [63]Marcozzi C, Cumino AC, Salerno GL: Role of NtcA, a cyanobacterial global nitrogen regulator, in the regulation of sucrose metabolism gene expression in Anabaena sp. PCC 7120. Arch Microbiol 2009, 191:255-263.
  • [64]López-Igual R, Flores E, Herrero A: Inactivation of a heterocyst-specific invertase indicates a principal role of sucrose catabolism in heterocysts of Anabaena sp. J Bacteriol 2010, 192:5526-5533.
  • [65]Sandh G, Ran L, Xu L, Sundqvist G, Bulone V, Bergman B: Comparative proteomic profiles of the marine cyanobacterium Trichodesmium erythraeum IMS101 under different nitrogen regimes. Proteomics 2011, 11:406-419.
  • [66]Schneegurt MA, Sherman DM, Nayar S, Sherman LA: Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 1994, 176:1586-1597.
  • [67]Zhao W, Ye Z, Zhao J: RbrA, a cyanobacterial rubrerythrin, functions as a FNR-dependent peroxidase in heterocysts in protection of nitrogenase from damage by hydrogen peroxide in Anabaena sp. PCC 7120. Mol Microbiol 2007, 66:1219-1230.
  • [68]Banerjee M, Raghavan PS, Ballal A, Rajaram H, Apte SK: Oxidative stress management in the filamentous, heterocystous, diazotrophic cyanobacterium, Anabaena PCC 7120. Photosynth Res 2013, 118:59-70.
  • [69]Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A: Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 2003, 13(3):230-235.
  • [70]Zhang P, Allahverdiyeva Y, Eisenhut M, Aro EM: Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS ONE 2009, 4:e5331.
  • [71]Ermakova M, Battchikova N, Allahverdiyeva Y, Aro EM: Novel heterocyst-specific flavodiiron proteins in Anabaena sp. PCC 7120. FEBS Lett 2013, 587:82-87.
  • [72]Sandh G, Xu L, Bergman B: Diazocyte development in the marine diazotrophic cyanobacterium Trichodesmium. Microbiology 2012, 158:345-352.
  文献评价指标  
  下载次数:1次 浏览次数:10次