期刊论文详细信息
BMC Genomics
Genetic architecture is more complex for resistance to Septoria tritici blotch than to Fusarium head blight in Central European winter wheat
Jochen C. Reif2  Michael Florian Mette2  Manje Gowda1  C. Friedrich H. Longin3  Thomas Miedaner3  Yusheng Zhao2  Guozheng Liu2  Vilson Mirdita2 
[1] International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya;Department of Cytogenetics and Genome Analysis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Germany;State Plant Breeding Institute, University of Hohenheim, Stuttgart, 70593, Germany
关键词: Septoria tritici blotch;    Fusarium head blight;    Hybrid wheat;    Genomic selection;    Association mapping;   
Others  :  1211972
DOI  :  10.1186/s12864-015-1628-8
 received in 2015-01-07, accepted in 2015-05-11,  发布年份 2015
PDF
【 摘 要 】

Background

Fusarium head blight (FHB) and Septoria tritici blotch (STB) severely impair wheat production. With the aim to further elucidate the genetic architecture underlying FHB and STB resistance, we phenotyped 1604 European wheat hybrids and their 135 parental lines for FHB and STB disease severities and determined genotypes at 17,372 single-nucleotide polymorphic loci.

Results

Cross-validated association mapping revealed the absence of large effect QTL for both traits. Genomic selection showed a three times higher prediction accuracy for FHB than STB disease severity for test sets largely unrelated to the training sets.

Conclusions

Our findings suggest that the genetic architecture is less complex and, hence, can be more properly tackled to perform accurate prediction for FHB than STB disease severity. Consequently, FHB disease severity is an interesting model trait to fine-tune genomic selection models exploiting beyond relatedness also knowledge of the genetic architecture.

【 授权许可】

   
2015 Mirdita et al.

【 预 览 】
附件列表
Files Size Format View
20150612022958450.pdf 796KB PDF download
Fig. 5. 17KB Image download
Fig. 4. 52KB Image download
Fig. 3. 36KB Image download
Fig. 2. 52KB Image download
Fig. 1. 20KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Bonjean AP, Angus WJ. The World Wheat Book: A History of Wheat Breeding. Ed. Bonjean AP, Angus WJ. Paris: Laroisier Publishing and Andover, Intercept 2001, P. 1131.
  • [2]Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics. 1990; 124:743-756.
  • [3]Longin CFH, Reif JC. Redesigning the exploitation of wheat genetic resources. Trends Plant Sci. 2014; 19:631-636.
  • [4]Zhao Y, Mette MF, Reif JC. Genomic selection in hybrid breeding. Plant Breeding. (In press). doi:10.1111/pbr.12231
  • [5]Bernardo R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci. 2008; 48:1649-1664.
  • [6]Heffner EL, Mark ES, Jannink J-L. Genomic selection for crop improvement. Crop Sci. 2009; 49:1-12.
  • [7]Jannink J-L, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics. 2010; 9:166-177.
  • [8]Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC. Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity. 2014; 112:638-645.
  • [9]Bernardo R. Genomewide selection when major genes are known. Crop Sci. 2014; 54:68-75.
  • [10]Buerstmayr H, Ban T, Anderson JA. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat. Plant Breed. 2009; 128:1-26.
  • [11]Miedaner T, Zhao Y, Gowda M, Longin CFH, Korzun V, Ebmeyer E et al.. Genetic architecture of resistance to Septoria tritici blotch in European wheat. BMC Genomics. 2013; 14:858. BioMed Central Full Text
  • [12]Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 2007; 177:2389-2397.
  • [13]Habier D. More than a third of the WCGALP presentations on genomic selection. J Anim Breed Genet. 2010; 127:336-337.
  • [14]Wientjes YCJ, Veerkamp FRF, Calus MPL. The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction. Genetics. 2013; 193:621-631.
  • [15]Gowda M, Zhao Y, Würschum T, Longin CF, Miedaner T, Ebmeyer E et al.. Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity. 2014; 112:552-561.
  • [16]Eriksen L, Borum F, Jahoor A. Inheritance and localisation of resistance to mycosphaerella graminicola causing septoria tritici blotch and plant height in the wheat (triticum aestivum L.) genome with DNA markers. Theor Appl Genet. 2003; 107:515-527.
  • [17]Chartrain L, Brading PA, Widdowson JP, Brown JKM. Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology. 2004; 94:497-504.
  • [18]Miedaner T, Risser P, Paillard S, Schnurrbusch T, Keller B, Hartl L et al.. Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Mol Breeding. 2012; 29:731-742.
  • [19]Goodwin SB. Back to basics and beyond: increasing the level of resistance to septoria tritici blotch in wheat. Australas Plant Path. 2007; 36:532-538.
  • [20]Zhao Y, Gowda M, Würschum T, Longin CFH, Korzun V, Kollers S et al.. Dissecting the genetic architecture of frost tolerance in Central European winter wheat. J Exp Bot. 2013; 64:4453-4460.
  • [21]Becher R, Miedaner T, Wirsel SG. 8 Biology, diversity, and management of FHB causing Fusarium species in small-grain cereals. In: Agricultural applications. Frank K, editor. Springer, Berlin, Heidelberg; 2013: p.199-241.
  • [22]Miedaner T, Korzun V. Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology. 2012; 102:560-566.
  • [23]Holzapfel J, Voss H-H, Miedaner T, Korzun V, Häberle J, Schweizer G et al.. Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theor Appl Genet. 2008; 117:1119-1128.
  • [24]Löffler M, Schön C-C, Miedaner T. Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed. 2009; 23:473-488.
  • [25]Miedaner T, Würschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC. Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breeding. 2011; 28:647-655.
  • [26]Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O et al.. Genetic architecture of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in European winter wheat. Mol Breed. 2013; 32:411-423.
  • [27]Jiang Y, Zhao Y, Rodemann B, Plieske J, Kollers S, Korzun V, et al. Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). Heredity. 2014. doi:10.1038/hdy.2014.104
  • [28]Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J-L, Sorrells M. Evaluation of genomic prediction methods for fusarium head blight resistance in wheat. The Plant Genome. 2012;5:51–61.
  • [29]Miedaner T, Lieberherr B, Koch S, Scholz M, Ebmeyer E. Combined inoculation of wheat pathogens Zymoseptoria tritici and Fusarium culmorum as a tool for increasing selection intensity in resistance breeding. Plant Breed. 2014; 133:543-547.
  • [30]Jia Y, Jannink J-L. Multiple-trait genomic selection methods increase. Genetics. 2012; 192:1513-1522.
  • [31]Miedaner T, Wilde F, Korzun V, Ebmeyer E, Schmolke M, Hartl L et al.. Marker selection for Fusarium head blight resistance based on quantitative trait loci (QTL) from two European sources compared to phenotypic selection in winter wheat. Euphytica. 2009; 166:219-227.
  • [32]Habier D, Fernando RL, Garrick DJ. Genomic-BLUP decoded: a look into the black box of genomic prediction. Genetics. 2013; 194:597-607.
  • [33]Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics. 2011; 12:186. BioMed Central Full Text
  • [34]Riedelsheimer C, Technow F, Melchinger AE. Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genomics. 2012; 13:452. BioMed Central Full Text
  • [35]Longin CFH, Gowda M, Mühleisen J, Ebmeyer E, Kazman E, Schachschneider R et al.. Hybrid breeding in wheat: heterosis, relevance of general and specific combining ability effects and consequences for optimum breeding strategies. Theor Appl Genet. 2013; 126:2791-2801.
  • [36]Würschum T, Langer SM, Longin CF, Korzun V, Akhunov E, Ebmeyer E et al.. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet. 2013; 126:1477-1486.
  • [37]Miedaner T, Gang G, Geiger HH. Quantitative-genetic basis of aggressiveness of 42 isolates of Fusarium culmorum for winter rye head blight. Plant Dis. 1996; 80:500-504.
  • [38]Gowda M, Zhao Y, Maurer H-P, Weissmann EA, Würschum T, Reif JC. Best linear unbiased prediction of triticale hybrid performance. Euphytica. 2013; 191:223-230.
  • [39]Gilmour AR, Gogel BG, Cullis BR, Thompson R. ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, UK; 2009.
  • [40]Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B et al.. Characterization of polyploid wheat genomic diversity using a high-density 90,000 SNP array. Plant Biotechnol J. 2014; 12:787-796.
  • [41]Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V, Ebmeyer V et al.. Genetic architecture of quality traits in soft winter wheat. Theor Appl Genet. 2011; 122:961-970.
  • [42]Holm S. A simple sequentially rejective multiple test procedure. Scand J Statist. 1979; 6:65-70.
  • [43]Whittaker JC, Thompson R, Denham MC. Marker-assisted selection using ridge regression. Genet Res. 2000; 75:249-252.
  • [44]Dekkers JCM, Garrick DJ, Fernando RL. Short course on use of high-density SNP genotyping for genetic improvement of livestock. Iowa State University, Ames; 2009.
  • [45]R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna; 2010.
  文献评价指标  
  下载次数:74次 浏览次数:19次