期刊论文详细信息
BMC Developmental Biology
FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution
Charles B Kimmel3  Mark M Sasaki4  Marcie McFadden3  John Dowd3  James T Nichols3  Tyler R Huycke2  Bonnie Ullmann3  April DeLaurier3  B Frank Eames1 
[1] Current address: Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada;Current address: Biological and Biomedical Sciences, Harvard University, Cambridge, MA, UK;Institute of Neuroscience, University of Oregon, Eugene, OR, USA;Current address: Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
关键词: Evolution;    Skeleton;    Cartilage;    Bone;    Zebrafish;    Website atlas;    Craniofacial development;   
Others  :  1085752
DOI  :  10.1186/1471-213X-13-23
 received in 2012-12-13, accepted in 2013-05-21,  发布年份 2013
PDF
【 摘 要 】

Background

The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development.

Description

We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses.

Conclusion

The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses.

【 授权许可】

   
2013 Eames et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113180202604.pdf 1768KB PDF download
Figure 5. 184KB Image download
Figure 4. 140KB Image download
Figure 3. 147KB Image download
Figure 2. 115KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]de Beer GR: The Development of the Vertebrate Skull. Chicago: University of Chicago Press; 1937:554.
  • [2]Bellairs R, Osmond M: The atlas of chick development. Amsterdam; Boston; London: Elsevier; 2005:470. xxiv
  • [3]Kaufman MH: The atlas of mouse development. London; San Diego: Academic Press; 1992:512. xvi
  • [4]Kimmel CB, Miller CT, Kruze G, Ullmann B, BreMiller RA, et al.: The shaping of pharyngeal cartilages during early development of the zebrafish. Dev Biol 1998, 203:245-263.
  • [5]Delaurier A, Burton N, Bennett M, Baldock R, Davidson D, et al.: The Mouse Limb Anatomy Atlas: an interactive 3D tool for studying embryonic limb patterning. BMC Dev Biol 2008, 8:83. BioMed Central Full Text
  • [6]Cubbage CC, Mabee PM: Development of the cranium and paired fins in the zebrafish, Danio rerio (Ostariophysi, Cyprinidae). J Morphol 1996, 229:121-160.
  • [7]Medeiros DM, Crump JG: New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw. Dev Biol 2012, 371:121-135.
  • [8]Janvier P: Early vertebrates. Oxford: Oxford University Press; 1996:393.
  • [9]Kuratani S: Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty. J Anat 2004, 205:335-347.
  • [10]Kuratani S, Nobusada Y, Horigome N, Shigetani Y: Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philos Trans R Soc Lond B Biol Sci 2001, 356:1615-1632.
  • [11]Glickman NS, Kimmel CB, Jones MA, Adams RJ: Shaping the zebrafish notochord. Development 2003, 130:873-887.
  • [12]Keller R, Davidson L, Edlund A, Elul T, Ezin M, et al.: Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 2000, 355:897-922.
  • [13]Jollie M: A primer of bone names for the understanding of the actinopterygian head and pectoral girdle skeletons. Canadian Journal of Zoology 1986, 64:365-379.
  • [14]Pehrson T: The development of the latero-sensory canal bones in the skull of Esox lucius. Acta Zoologica (Stockholm) 1944, 25:134-157.
  • [15]Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH: Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 2008, 322:1065-1069.
  • [16]Huycke TR, Eames BF, Kimmel CB: Hedgehog-dependent proliferation drives modular growth during morphogenesis of a dermal bone. Development 2012, 139:2371-2380.
  • [17]Schilling TF, Kimmel CB: Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development 1997, 124:2945-2960.
  • [18]Kimmel CB, DeLaurier A, Ullmann B, Dowd J, McFadden M: Modes of developmental outgrowth and shaping of a craniofacial bone in zebrafish. PLoS One 2010, 5:e9475.
  • [19]Eberhart JK, He X, Swartz ME, Yan YL, Song H, et al.: MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet 2008, 40:290-298.
  • [20]Hall BK, Miyake T: The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anatomy and Embryology 1992, 186:107-124.
  • [21]Eames BF, Schneider RA: The genesis of cartilage size and shape during development and evolution. Development 2008, 135:3947-3958.
  • [22]Graham A, Koentges G, Lumsden A: Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death. Mol Cell Neurosci 1996, 8:76-83.
  • [23]Atchley WR, Hall BK: A model for development and evolution of complex morphological structures. Biological Reviews of the Cambridge Philosophical Society 1991, 66:101-157.
  • [24]Patterson C: Cartilage bones, dermal bones, and membrane bones, or the exoskeleton versus the endoskeleton. In Problems in Vertebrate Evolution. Edited by Andrews S, Miles R, Walker A. London: Academic Press; 1977:77-121.
  • [25]Westerfield M: The zebrafish book. Eugene: Univ. of Oregon Press; 2007. [A guide for the laboratory use of zebrafish (Danio rerio)]
  • [26]Eames BF, Yan YL, Swartz ME, Levic DS, Knapik EW, et al.: Mutations in fam20b and xylt1 reveal that cartilage matrix controls timing of endochondral ossification by inhibiting chondrocyte maturation. PLoS Genet 2011, 7:e1002246.
  • [27]Bonkowsky JL, Wang X, Fujimoto E, Lee JE, Chien CB, et al.: Domain-specific regulation of foxP2 CNS expression by lef1. BMC Dev Biol 2008, 8:103. BioMed Central Full Text
  • [28]DeLaurier A, Eames BF, Blanco-Sanchez B, Peng G, He X, et al.: Zebrafish sp7:EGFP: a transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration. Genesis 2010, 48:505-511.
  • [29]Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, et al.: Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 2002, 129:3009-3019.
  • [30]Das A, Crump JG: Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest. PLoS Genet 2012, 8:e1002710.
  • [31]LeClair EE, Topczewski J: Development and regeneration of the zebrafish maxillary barbel: a novel study system for vertebrate tissue growth and repair. PLoS One 2010, 5:e8737.
  • [32]Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, et al.: A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 2004, 7:133-144.
  • [33]Kotani T, Nagayoshi S, Urasaki A, Kawakami K: Transposon-mediated gene trapping in zebrafish. Methods 2006, 39:199-206.
  • [34]Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn 1995, 203:253-310.
  • [35]Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE: Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn 2009, 238:2975-3015.
  • [36]Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, et al.: Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 2007, 4:323-326.
  文献评价指标  
  下载次数:76次 浏览次数:65次