期刊论文详细信息
BMC Complementary and Alternative Medicine
XiangshaLiujunzi decoction alleviates the symptoms of functional dyspepsia by regulating brain–gut axis and production of neuropeptides
Yong Wang1  Gen-Mao Li1  Dong-Yu Ge1  Xin Ma1  Jie Ma1  Xu-Dong Tang2  Feng Li1  Jing Liu1 
[1] School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, China;Digestive Department, Xiyuan Hospital, Affiliated with Chinese Academy of TCM, Beijing, China
关键词: Brain-gut peptide;    Brain–gut axis;    Functional dyspepsia;    Xiangshaliujunzi decoction;   
Others  :  1233212
DOI  :  10.1186/s12906-015-0913-z
 received in 2015-01-19, accepted in 2015-10-13,  发布年份 2015
PDF
【 摘 要 】

Background

Chinese medicine xiangshaliujunzi decoction (XSLJZD) plays a key role in treating functional dyspepsia (FD), a common clinical gastrointestinal disorder. However, the mechanism of this disease is unclear. Brain–gut axis regulates food intake behaviour, and this regulatory mechanism is mediated by neuropeptides. Brain–gut axis impairment and neuropeptide alteration may be the pathological mechanisms of FD, and brain–gut axis regulation may influence the action of medicine.

Methods

In our experiment, the effect of XSLJZD on FD was evaluated in terms of food intake, sucrose preference test and electromyogram. Changes in neuropeptides [ghrelin, cholecystokinin (CCK) and vasoactive intestinal polypeptide (VIP)] were detected through immunohistochemistry, real-time PCR and ELISA.

Results

XSLJZD increased food intake and the percentage of sucrose preference (>75 %). However, the response to gastric detention decreased. Furthermore, XSLJZD increased ghrelin, CCK, VIP proteins and genes in the stomach. XSLJZD also increased ghrelin, CCK and VIP proteins in serum. By contrast, XSLJZD decreased the mRNA expression of these neuropeptides in the hypothalamus.

Conclusions

XSLJZD alleviated the symptoms of FD by upregulating the production of ghrelin, CCK and VIP and by increasing the levels of these neuropeptides in circulation. This finding can help elucidate the mechanism of FD and can provide further insight into the pharmacokinetics of XSLJZD.

【 授权许可】

   
2015 Liu et al.

【 预 览 】
附件列表
Files Size Format View
20151119035803385.pdf 2997KB PDF download
Fig. 12. 19KB Image download
Fig. 11. 30KB Image download
Fig. 10. 19KB Image download
Fig. 9. 102KB Image download
Fig. 8. 98KB Image download
Fig. 7. 113KB Image download
Fig. 6. 81KB Image download
Fig. 5. 82KB Image download
Fig. 4. 67KB Image download
Fig. 3. 27KB Image download
Fig. 2. 20KB Image download
Fig. 1. 19KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

【 参考文献 】
  • [1]Drossman DA, Li Z, Andruzzi E, Temple RD, Talley NJ, Thompson WG et al.. U.S. householder survey of functional gastrointestinal disorders. Prevalence, sociodemography, and health impact. Dig Dis Sci. 1993; 38(9):1569-80.
  • [2]Ping L. Investigation of functional gastrointestinal disease. Pract Med. 2003; 19(4):424-6.
  • [3]Xia J. Investigate the mobidity and the related factors of functional gastrointestinal disorders in officers and soldiers at grass-roots units of some troops. J Nav Gen Hosp. 2010; 23(4):193-5.
  • [4]Zhang M. Investigation of functional gastrointestinal disease in crew. Naut Med Hyperb Med. 2011; 18(1):27-30.
  • [5]Tack J, Bisschops R, Sarnelli G. Pathophysiology and treatment of functional dyspepsia. Gastroenterology. 2004; 127(4):1239-55.
  • [6]Futagami S, Shimpuku M, Yin Y, Shindo T, Kodaka Y, Nagoya H et al.. Pathophysiology of functional dyspepsia. J Nippon Med Sch. 2011; 78(5):280-5.
  • [7]Timmermans JP, Scheuermann DW, Stach W, Adriaensen D, De Groodt-Lasseel MH. Functional morphology of the enteric nervous system with special reference to large mammals. Eur J Morphol. 1992; 30(2):113-22.
  • [8]Costa M, Brookes SJ, Hennig GW. Anatomy and physiology of the enteric nervous system. Gut. 2000; Suppl 4:iv15-9.
  • [9]Furness JB. The organisation of the autonomic nervous system: peripheral connections. Auton Neurosci. 2006; 130(1–2):1-5.
  • [10]Konturek SJ, Konturek JW, Pawlik T, Brzozowski T. Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol. 2004; 55(1):137-54.
  • [11]Mazur M, Furgała A, Thor PJ. Visceral sensitivity disturbances in the pathogenesis of functional gastrointestinal disorders. Folia Med Cracov. 2004; 45(1):33-49.
  • [12]Holzer P, Farzi A. Neuropeptides and the microbiota-gut-brain axis. Adv Exp Med Biol. 2014; 817:195-219.
  • [13]Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999; 402(6762):656-60.
  • [14]Rindi G, Necchi V, Savio A, Torsello A, Zoli M, Locatelli V et al.. Characterisation of gastric ghrelin cells inman and other mammals: studies in adult and fetal tissues. Histochem Cell Biol. 2002; 117(6):511-9.
  • [15]Koleva DI, Orbetzova MM, Atanassova PK. Adipose tissue hormones and appetite and body weight regulators in insulin resistance. Folia Med. 2013; 55(1):25-32.
  • [16]Atalayer D, Gibson C, Konopacka A, Geliebter A. Ghrelin and eating disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 40:70-82.
  • [17]Komarowska H, Jaskula M, Stangierski A, Wasko R, Sowinski J, Ruchala M. Influence of ghrelin on energy balance and endocrine physiology. Neuro Endocrinol Lett. 2012; 33(8):749-56.
  • [18]Akamizu T, Iwakura H, Ariyasu H, Kangawa K. Ghrelin and functional dyspepsia. Int J Pept. 2010; 2010:548457.
  • [19]Dockray GJ. Cholecystokinin and gut-brain signalling. Regul Pept. 2009; 155(1–3):6-10.
  • [20]Chandra R. Current opinion in endocrinology. Diabetes Obes. 2007; 14(1):63-7.
  • [21]Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol. 1973; 84(3):488-95.
  • [22]Degen L, Matzinger D, Drewe J, Beglinger C. The effect of cholecystokinin incontrolling appetite and food intake in humans. Peptides. 2001; 22(8):1265-9.
  • [23]Khoo J, Rayner CK, Feinle-Bisset C. Gastrointestinal hormonal dysfunction in gastroparesis and functional dyspepsia. Neurogastroenterol Motil. 2010; 22(2):1270-8.
  • [24]Dockray GJ. Luminal sensing in the gut: an overview. J Physiol Pharmacol. 2003; 54 Suppl 4:9-17.
  • [25]Tomita R. Regulation of vasoactive intestinal peptide and substance P in the human pyloric sphincter. Hepatogastroenterology. 2009; 56(94–95):1403-6.
  • [26]Gańko M, Całka J. Prolonged acetylsalicylic-acid-supplementation-induced gastritis affects the chemical coding of the stomach innervating vagal efferent neurons in the porcine dorsal motor vagal nucleus (DMX). J Mol Neurosci. 2014; 54(2):188-98.
  • [27]Xiao Y, Liu YY, Yu KQ, Ouyang MZ, Luo R, Zhao XS. Chinese herbal medicine liu jun zi tang and xiang sha liu jun zi tang for functional dyspepsia: meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. 2012; 2012:936459.
  • [28]Liu LS, Winston JH, Shenoy MM, Song GQ, Chen JD, Pasricha PJ. A rat model of chronic gastric sensorimotor dysfunction resulting from transient neonatal gastric irritation. Gastroenterology. 2008; 134(7):2070-9.
  • [29]Towell A, Muscat R, Willner P. Effects of pimozide on sucrose consumption and preference. Psychopharmacology (Berl). 1987; 92(2):262-4.
  • [30]Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology. 2004; 29(11):2007-17.
  • [31]Wang X, Zhao T, Qiu Y, Su M, Jiang T, Zhou M et al.. Metabonomics approach to understanding acute and chronic stress in rat models. J Proteome Res. 2009; 8(5):2511-8.
  • [32]Winston JH, Sarna SK. Developmental origins of functional dyspepsia-like gastric hypersensitivity in rats. Gastroenterology. 2013; 144(3):570-9.
  • [33]Halland M, Almazar A, Lee R, Atkinson E, Larson J, Talley NJ et al.. A case–control study of childhood trauma in the development of irritable bowel syndrome. Neurogastroenterol Motil. 2014; 26(7):990-8.
  • [34]Martín-Villa JM. Neuroendocrine stimulation of mucosal immune cells in inflammatory bowel disease. Curr Pharm Des. 2014; 20(29):4766-73.
  • [35]Peruzzo B, Pastor FE, Blázquez JL, Schöbitz K, Peláez B, Amat P et al.. A second look at the barriers of the medial basal hypothalamus. Exp Brain Res. 2000; 132(1):10-26.
  • [36]Murphy KG, Dhillo WS, Bloom SR. Gut peptides in the regulation of food intake and energy homeostasis. Endocr Rev. 2006; 27(7):719-27.
  • [37]Liu L, Li Q, Sapolsky R, Liao M, Mehta K, Bhargava A et al.. Transient gastric irritation in the neonatal rats leads to changes in hypothalamic CRF expression, depression-and anxiety-like behavior as adults. PLoS One. 2011; 6(5):e19498.
  • [38]Tack J, Caenepeel P, Fischler B, Piessevaux H, Janssens J. Symptoms associated with hypersensitivity to gastric distention in functional dyspepsia. Gastroenterology. 2001; 121(3):526-35.
  • [39]Vermeulen W, De Man JG, Pelckmans PA, De Winter BY. Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol. 2014; 20(4):1005-20.
  • [40]Vandenberghe J, Vos R, Persoons P, Demyttenaere K, Janssens J, Tack J. Dyspeptic patients with visceral hypersensitivity: sensitisation of pain specific or multimodal pathways? Gut. 2005; 54(7):914-9.
  • [41]Liu LS, Shenoy M, Pasricha PJ. The analgesic effects of the GABAB receptor agonist, baclofen, in a rodent model of functional dyspepsia. Neurogastroenterol Motil. 2011; 23(4):356-61.
  • [42]Tack J, Talley NJ, Camilleri M, Holtmann G, Hu P, Malagelada JR et al.. Functional gastroduodenal disorders. Gastroenterology. 2006; 130(5):1466-79.
  文献评价指标  
  下载次数:53次 浏览次数:9次