期刊论文详细信息
BMC Research Notes
Validation of reference genes aiming accurate normalization of qPCR data in soybean upon nematode parasitism and insect attack
Rodrigo Rocha Fragoso3  Maria Fatima Grossi de Sa2  Thales Lima Rocha4  Regina Maria Dechechi Gomes Carneiro4  Osmundo Brilhante de Oliveira Neto1  Antônio Américo Barbosa Viana2  Roberta Ramos Coelho4  Vívian de Jesus Miranda5 
[1] Faculdades Integradas do Planalto Central – Faciplac, Brasília, DF, Brazil;Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil;Embrapa Cerrados, Laboratory of Phytopathology, Planaltina, DF, Brazil;Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant-Pest Interaction, PqEB Final Av. W/5 Norte, Brasília, DF, Brazil;Department of Cell Biology Graduate Program in Molecular Biology, University of Brasília, Brasília, DF, Brazil
关键词: Real-time PCR;    Gene expression;    Anticarsia gemmatalis;    Meloidogyne incognita;    Glycine max;   
Others  :  1142699
DOI  :  10.1186/1756-0500-6-196
 received in 2013-01-28, accepted in 2013-05-04,  发布年份 2013
PDF
【 摘 要 】

Background

Soybean pathogens and pests reduce grain production worldwide. Biotic interaction cause extensive changes in plant gene expression profile and the data produced by functional genomics studies need validation, usually done by quantitative PCR. Nevertheless, this technique relies on accurate normalization which, in turn, depends upon the proper selection of stable reference genes for each experimental condition. To date, only a few studies were performed to validate reference genes in soybean subjected to biotic stress. Here, we report reference genes validation in soybean during root-knot nematode (Meloidogyne incognita) parasitism and velvetbean caterpillar (Anticarsia gemmatalis) attack.

Findings

The expression stability of nine classical reference genes (GmCYP2, GmELF1A, GmELF1B, GmACT11, GmTUB, GmTUA5, GmG6PD, GmUBC2 and GmUBC4) was evaluated using twenty-four experimental samples including different organs, developmental stages, roots infected with M. incognita and leaves attacked by A. gemmatalis. Two different algorithms (geNorm and NormFinder) were used to determine expression stability. GmCYP2 and GmUBC4 are the most stable in different organs. Considering the developmental stages, GmELF1A and GmELF1B genes are the most stable. For spatial and temporal gene expression studies, normalization may be performed using GmUBC4, GmUBC2, GmCYP2 and GmACT11 as reference genes. Our data indicate that both GmELF1A and GmTUA5 are the most stable reference genes for data normalization obtained from soybean roots infected with M. incognita, and GmCYP2 and GmELF1A are the most stable in soybean leaves infested with A. gemmatalis.

Conclusions

Future expression studies using nematode infection and caterpilar infestation in soybean plant may utilize the reference gene sets reported here.

【 授权许可】

   
2013 Miranda et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328130007274.pdf 1528KB PDF download
20150206014439378.pdf 173KB PDF download
Figure 3. 26KB Image download
Figure 2. 68KB Image download
Figure 1. 142KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Sudaric A, Vrataric M, Drinic SM, Matosa M: Biotechnology in soybean breeding. Genetika 2010, 42:91-102.
  • [2]Dwevedi A, Kayastha AM: Soybean: a multifaceted legume with enormous economic capabilities. In Soyben - biochemistry, chemistry and physiology. Edited by Ng T-B. India: InTech; 2011:177-197.
  • [3]Koc AB, Abdullah M, Fereidouni M: Soybean processing for biodiesel production. In Soybean - application and technology. Edited by Ng T-B. United States: InTech; 2011:19-32.
  • [4]Grossi-de-Sá MF, Pelegrini PB, Fragoso RR: Genetically modified soybean for insect-pest and disease control. In Soybean - molecular aspects of breeding. Volume 4. 1st edition. Edited by Sudaric A. Brazil: InTech; 2011:429-452.
  • [5]Macedo MLR, Freire Md GM, Kubo CEG, Parra JRP: Bioinsecticidal activity of talisia esculenta reserve protein on growth and serine digestive enzymes during larval development of anticarsia gemmatalis. Comp Biochem Physiol C Toxicol Pharmacol 2011, 153:24-33.
  • [6]Hofmann J, Grundler FMW: Identification of reference genes for qRT-PCR studies of gene expression in giant cells and syncytia induced in arabidopsis thaliana by meloidogyne incognita and heterodera schachtii. Nematology 2007, 9:317-323.
  • [7]Ehwaeti ME, Fargette M, Phillips MS, Trudgill DL: Host status differences and their relevance to damage by meloidogyne incognita. Nematology 1999, 1:421-432.
  • [8]Trudgill DL, Blok VC: Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 2001, 39:53-77.
  • [9]Sasser JN, Eisenback JD, Carter CC, Triantaphyllou AC: The international meloidogyne project-its goals and accomplishments. Annu Rev Phytopathol 1983, 21:271-288.
  • [10]Gheysen G, Fenoll C: Gene expression in nematode feeding sites. Annu Rev Phytopathol 2002, 40:191-219.
  • [11]De Vos M, Van Zaanen W, Koornneef A, Korzelius JP, Dicke M, Van Loon LC, Pieterse CM: Herbivore-induced resistance against microbial pathogens in arabidopsis. Plant Physiol 2006, 142:352-363.
  • [12]Ramsay K, Wang Z, Jones MG: Using laser capture microdissection to study gene expression in early stages of giant cells induced by root-knot nematodes. Mol Plant Pathol 2004, 5:587-592.
  • [13]Ibrahim HM, Hosseini P, Alkharouf NW, Hussein EH, Gamal El-Din Ael K, Aly MA, Matthews BF: Analysis of gene expression in soybean (glycine max) roots in response to the root knot nematode meloidogyne incognita using microarrays and KEGG pathways. BMC Genomics 2011, 12:220. BioMed Central Full Text
  • [14]Pfaffl MW: Quantification strategies in real-time PCR. In A-Z of quantitative PCR. 2nd edition. Edited by Bustin SA. La Jolla, CA, USA: International University Line (IUL); 2004:87-112. [Tsigelny IF (Series Editor): IUL Biotechnology Series]
  • [15]Jian B, Liu B, Bi Y, Hou W, Wu C, Han T: Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 2008, 9:59. BioMed Central Full Text
  • [16]Hu R, Fan C, Li H, Zhang Q, Fu YF: Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 2009, 10:93. BioMed Central Full Text
  • [17]Libault M, Thibivilliers S, Radwan O, Clough SJ, Stacey G: Identification of four soybean reference genes for gene expression normalization. The Plant Genome 2008, 1:44-54.
  • [18]Bybd DW, Kirkpatrick T, Barker KR: An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol 1983, 15:142-143.
  • [19]Fernald SZRD: Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 2005, 12:1047-1064.
  • [20]Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J: QBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 2007, 8:R19. BioMed Central Full Text
  • [21]Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64:5245-5250.
  • [22]Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AM: Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 2006, 11:302-308.
  • [23]Vogel H, Kroymann J, Mitchell-Olds T: Different transcript patterns in response to specialist and generalist herbivores in the wild arabidopsis relative boechera divaricarpa. PLoS One 2007, 2:e1081.
  • [24]Nicot N, Hausman JF, Hoffmann L, Evers D: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 2005, 56:2907-2914.
  • [25]Rehrig EM, Appel HM, Schultz JC: Measuring 'normalcy' in plant gene expression after herbivore attack. Mol Ecol Resour 2011, 11:294-304.
  • [26]Sturzenbaum SR, Kille P: Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol B Biochem Mol Biol 2001, 130:281-289.
  • [27]Martinez-Gonzalez J, Hegardt FG: Characterization of a cDNA encoding a cytosolic peptidylprolyl cis-trans-isomerase from blattella germanica. Eur J Biochem 1995, 234:284-292.
  • [28]Marivet J, Margis-Pinheiro M, Frendo P, Burkard G: Bean cyclophilin gene expression during plant development and stress conditions. Plant Mol Biol 1994, 26:1181-1189.
  • [29]JdA E, Poucke KV, Karimi M, Groodt R, Gheysen G, Engler G, Gheysen G: Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. Plant J 2004, 38:12-26.
  • [30]De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CM: Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 2005, 18:923-937.
  • [31]Rayapuram C, Baldwin IT: Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata. BMC Plant Biol 2008, 8:109. BioMed Central Full Text
  • [32]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:1-11.
  • [33]Opperman CH, Taylor CG, Conkling MA: Root-knot nematode directed expression of a plant root-specific gene. Science 1994, 263:221-223.
  文献评价指标  
  下载次数:38次 浏览次数:8次