期刊论文详细信息
BMC Developmental Biology
Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea)
Andreas Heyland2  Mariana Leguia3  Gary Wessel1  Julia Nguyen2  Jamie-Lee Giardini2  Josh Sutherby2 
[1] Brown University, MCB, Providence, RI 02912, USA;University of Guelph, Integrative Biology, Guelph, ON N1G-2 W1, Canada;Current address: U.S. Naval Medical Research Unit No.6, Lima, Peru
关键词: Modulation;    Life history evolution;    Settlement;    Histamine receptors;    Histamine;    Echinoderm life-history;    Settlement;    Metamorphic competence;    Metamorphosis;   
Others  :  1086651
DOI  :  10.1186/1471-213X-12-14
 received in 2011-11-30, accepted in 2012-03-13,  发布年份 2012
PDF
【 摘 要 】

Background

A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus.

Results

Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae.

Conclusions

We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom - metamorphosis.

【 授权许可】

   
2012 Sutherby et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116013831357.pdf 3050KB PDF download
Figure 8. 29KB Image download
Figure 7. 29KB Image download
Figure 6. 27KB Image download
Figure 5. 50KB Image download
Figure 4. 62KB Image download
Figure 3. 68KB Image download
Figure 2. 76KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Hadfield MG, Carpizo-Ituarte EJ, del Carmen K, Nedved BT: Metamorphic competence, a major adaptive convergence in marine invertebrate larvae. Am Zool 2001, 41(5):1123-1131.
  • [2]Heyland A, Hodin J, Reitzel AM: Hormone signaling in evolution and development: a non-model system approach. Bioessays 2005, 27(1):64-75.
  • [3]Hadfield MG: Why and how marine-invertebrate larvae metamorphose so fast. Semin Cell Dev Biol 2000, 11(6):437-443.
  • [4]Hadfield MG, Koehl MAR: Rapid behavioral responses of an invertebrate larva to dissolved settlement cue. Biol Bull 2004, 207(1):28-43.
  • [5]Strathmann MF, Strathmann RR: An extraordinarily long larval duration of 4.5 years from hatching to metamorphosis for teleplanic veligers of Fusitriton oregonensis. Biol Bull 2007, 213(2):152-159.
  • [6]Scheltema RS, Williams IP: Long-distance dispersal of planktonic larvae and the biogeography and evolution of some polynesian and western pacific mollusks. Bull Mar Sci 1983, 33(3):545-565.
  • [7]Manahan DT, Vavra J: Protein metabolism in lecithotrophic larvae (Gastropoda : Haliotis rufescens). Biol Bull 1999, 196(2):177-186.
  • [8]Heyland A, Reitzel AM, Degnan S: Emerging patterns in the regulation of marine invertebrate settlement and metamorphosis. In Mechanisms of Life History Evolution. Edited by Flatt T, Heyland A. Oxford University Press; 2011.
  • [9]Heyland A, Moroz LL: Signaling mechanisms underlying metamorphic transitions in animals. Integr Comp Biol 2006, 46(6):743-759.
  • [10]Highsmith RC: Induced settlement and metamorphosis of sand dollar (Dendraster-excentricus) larvae in predator-free sites - adult sand dollar beds. Ecology 1982, 63(2):329-337.
  • [11]Pearce CM, Scheibling RE: Induction of metamorphosis of larvae of the green sea-urchin, Strongylocentrotus-droebachiensis, by coralline red algae. Biol Bull 1990, 179(3):304-311.
  • [12]Strathmann MF: Reproduction and Larval Development of Marine Invertebrates of the Northern Pacific Coast. Seattle: University of Washington Press; 1987.
  • [13]Rowley RJ: Settlement and recruitment of sea-urchins (Strongylocentrotus spp) in a sea-urchin barren ground and a kelp bed - are populations regulated by settlement or post-settlement processes. Mar Biol 1989, 100(4):485-494.
  • [14]Carpizo-Ituarte EJ, Salas-Garza A, Pares-Sierra G: Induction of metamorphosis with KCl in three species of sea urchins and its pmplications in the production of juveniles. Cienc Mar 2002, 28(2):157-166.
  • [15]Sato Y, Kaneko H, Negishi S, Yazaki I: Larval arm resorption proceeds concomitantly with programmed cell death during metamorphosis of the sea urchin Hemicentrotus pulcherrimus. Cell Tissue Res 2006, 326(3):851-860.
  • [16]Hyman LH: The Invertebrates: Echinodermata. New York: McGraw-Hill; 1955.
  • [17]Mazur JE: A description of complete metamorphosis of the sea urchin Lytechinus variegatus cultured in synthetic sea water. Ohio J Sci 1971, 71:30-36.
  • [18]Cameron RA, Hinegardner RT: Early events in sea-urchin metamorphosis, description and analysis. J Morphol 1978, 157(1):21-31.
  • [19]Noguchi M: External feature and body skeleton in late development of Hemicentrotus pulcherrimus. Tokyo Metropolitan University; 1988.
  • [20]Bisgrove BW, Burke RD: Development of serotonergic neurons in embryos of the sea-urchin, Strongylocentrotus-purpuratus. Dev Grow Diff 1986, 28(6):569-574.
  • [21]Thorndyke MC, Crawford BD, Burke RD: Localization of a SALMFamide neuropeptide in the larval nervous system of the sand dollar Dendraster excentricus. Acta Zool 1992, 73(4):207-212.
  • [22]Beer AJ, Moss C, Thorndyke M: Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris. Biol Bull 2001, 200(3):268-280.
  • [23]Bisgrove BW, Burke RD: Development of the nervous system of the pluteus larva of Strongylocentrotus droebachiensis. Cell Tis Res 1987, 248:335-343.
  • [24]Burke RD: Neural control of metamorphosis in Dendraster-excentricus. Biol Bull 1983, 164(2):176-188.
  • [25]Naidenko TK: Induction of metamorphosis of two species of sea urchin from Sea of Japan. Mar Biol 1996, 126(4):685-692.
  • [26]Swanson RL, Williamson JE, De Nys R, Kumar N, Bucknall MP, Steinberg PD: Induction of settlement of larvae of the sea urchin Holopneustes purpurascens by histamine from a host alga. Biol Bull 2004, 206(3):161-172.
  • [27]Swanson RL, Marshall DJ, Steinberg PD: Larval desperation and histamine: how simple responses can lead to complex changes in larval behaviour. J Exp Biol 2007, 210(18):3228-3235.
  • [28]Swanson RL, Byrne M, Prowse TAA, Mos B, Dworjanyn SA, Steinberg PD: Dissolved histamine: a potential habitat marker promoting settlement and metamorphosis in sea urchin larvae. Mar Biol 2012.
  • [29]Pires A, Croll RP, Hadfield MG: Catecholamines modulate metamorphosis in the opisthobranch gastropod Phestilla sibogae. Biol Bull 2000, 198(3):319-331.
  • [30]Bishop CD, Brandhorst BP: Development of nitric oxide synthase-defined neurons in the sea urchin larval ciliary band and evidence for a chemosensory function during metamorphosis. Dev Dyn 2007, 236(6):1535-1546.
  • [31]Bishop CD, Huggett MJ, Heyland A, Hodin J, Brandhorst BP: Interspecific variation in metamorphic competence in marine invertebrates: the significance for comparative investigations into the timing of metamorphosis. Integr Comp Biol 2006, 46(6):662-682.
  • [32]Bishop CD, Brandhorst BP: On nitric oxide signaling, metamorphosis, and the evolution of biphasic life cycles. Evol Dev 2003, 5(5):542-550.
  • [33]Brandhorst BP, Bishop CD: NO/cGMP signaling and HSP90 activity represses metamorphosis in the sea urchin Lytechinus pictus. Biol Bull 2001, 201(3):394-404.
  • [34]Reite OB: Comparative physiology of histamine. Physiol Rev 1972, 52(3):778-819.
  • [35]Roeder T: Metabotropic histamine receptors - nothing for invertebrates? Eu J Pharmacol 2003, 466(1–2):85-90.
  • [36]Jackson FR: Prokaryotic and eukaryotic pyridoxal-dependent decarboxylases are homologous. J Mol Evol 1990, 31:325-329.
  • [37]Pollack I, Hofbauer A: Histamine-like immunoreactivity in the visual-system and brain of Drosophila-melanogaster. Cell Tis Res 1991, 266(2):391-398.
  • [38]Buchner E, Buchner S, Burg MG, Hofbauer A, Pak WL, Pollack I: Histamine is a major mechanosensory neurotransmitter candidate in Drosophila-melanogaster. Cell Tis Res 1993, 273(1):119-125.
  • [39]Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL: International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 1997, 49(3):253-278.
  • [40]Zhu Y, Michalovich D, Wu H-L, Tan KB, Dytko GM, Mannan IJ, Boyce R, Alston J, Tierney LA, Li X, Herrity NC, Vawter L, Sarau HM, Arnes RS, Davenport CM, Hieble JP, Wilson S, Bergsma DJ, Fitzgerald LR: Cloning, expression, and pharmacological characterization of a novel human histamine receptor. Mol Pharmacol 2001, 59(3):434-441.
  • [41]Leguia M, Wessel GM: The histamine H1 receptor activates the nitric oxide pathway at fertilization. Mol Reprod Dev 2006, 73(12):1550-1563.
  • [42]Dey SK: Role of histamine in implantation - inhibition of histidine-decarboxylase induces delayed implantation in the rabbit. Biol Reprod 1981, 24(4):867-869.
  • [43]McCoole MD, Baer KN, Christie AE: Histaminergic signaling in the central nervous system of Daphnia and a role for it in the control of phototactic behaviour. J Exp Biol 2011, 214:1773-1782.
  • [44]Thurber RV, Epel D: Apoptosis in early development of the sea urchin, Strongylocentrotus purpuratus. Dev Biol 2007, 303(1):336-346.
  • [45]Markova LN, Buznikov GA, Kovacevic N, Rakic L, Salimova NB, Volina EV: Histochemical-study of biogenic monoamines in early (prenervous) and late embryos of sea-urchins. Int J Dev Neurosci 1985, 3(5):493-495.
  • [46]Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW: Genomic insights into the immune system of the sea urchin. Science 2006, 314:952-956.
  • [47]Smith SL, Smith AC: Sensitization and histamine release by cells of the sand dollar Mellita quinquiesperforata. Dev Comp Immunol 1985, 9(4):597-603.
  • [48]Welborn JR, Manahan DT: Taurine metabolism in larvae of marine mollusks (Bivalvia, Gastropoda). J Exp Biol 1995, 198(8):1791-1799.
  • [49]Berking S: Taurine found to stabilize the larval state is released upon induction of metamorphosis in the hydrozon Hydractinia. Roux’s Arch Dev Biol 1988, 197(6):321-327.
  • [50]Marshall DJ, Keough MJ: Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. Mar Ecol Prog Ser 2003, 255:145-153.
  • [51]Toonen RJ, Pawlik JR: Settlement of the gregarious tube worm Hydroides dianthus (Polychaeta : Serpulidae). I. Gregarious and nongregarious settlement. Mar Ecol Prog Ser 2001, 224:103-114.
  • [52]Knightjones EW: Decreased discrimination during setting after prolonged planktonic life in larvae of Spirorbis-borealis (Serpulidae). J Mar Biol Assoc UK 1953, 32(2):337-345.
  • [53]Wilson DP: The settlement of Ophelia-bicornis savigny larvae - the 1952 experiments. J M Biol Assoc UK 1953, 32(1):209-233.
  • [54]Wilson DP: The settlement of Ophelia-bicornis savigny larvae - the 1951 experiments. J Mar Biol Assoc UK 1953, 31(3):413-438.
  • [55]Strathmann RR, Foley GP, Hysert AN: Loss and gain of the juvenile rudiment and metamorphic competence during starvation and feeding of bryozoan larvae. Evol Dev 2008, 10(6):731-736.
  • [56]Hentschel BT, Emlet RB: Metamorphosis of barnacle nauplii: Effects of food variability and a comparison with amphibian models. Ecology 2000, 81(12):3495-3508.
  • [57]Hentschel BT: Complex life cycles in a variable environment: Predicting when the timing of metamorphosis shifts from resource dependent to developmentally fixed. Am Nat 1999, 154(5):549-558.
  • [58]Brandhorst BP, Bishop CD, Bates WR: Regulation of metamorphosis in ascidians involves NO/cGMP signaling and HSP90. J Exp Zool 2001, 289(6):374-384.
  • [59]Burke RD: Sensory structures potentially responsible for the perception of substrate associated cues to metamorphosis in echinoids. Am Zool 1979, 19(3):958.
  • [60]Burke RD: The induction of metamorphosis of marine invertebrate larvae - stimulus and response. Can J Zool 1983, 61(8):1701-1719.
  • [61]Bishop CD, Pires A, Norby SW, Boudko D, Moroz LL, Hadfield MG: Analysis of nitric oxide-cyclic guanosine monophosphate signaling during metamorphosis of the nudibranch Phestilla sibogae Bergh (Gastropoda : Opisthobranchia). Evol Dev 2008, 10(3):288-299.
  • [62]Pechenik JA, Cochrane DE, Li W, West ET, Pires A, Leppo M: Nitric oxide inhibits metamorphosis in larvae of Crepidula fornicata, the slippershell snail. Biol Bull 2007, 213(2):160-171.
  • [63]Heyland A, Hodin J: Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development. Evolution 2004, 58(3):524-538.
  • [64]Heyland A, Reitzel AM, Price DA, Moroz LL: Endogenous thyroid hormone synthesis in facultative planktotrophic larvae of the sand dollar Clypeaster rosaceus: implications for the evolutionary loss of larval feeding. Evol Dev 2006, 8(6):568-579.
  • [65]Zhou X, Xu Y, Jin C, Qian PY: Reversible anti-settlement activity against Amphibalanus (=balanus) amphitrite, Bugula neritina, and Hydroides elegans by a nontoxic pharmaceutical compound, mizolastine. Biofouling 2009, 25(8):739-747.
  • [66]Katow H, Yaguchi S, Kiyomoto M, Washio M: The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae. Mech Dev 2004, 121(4):325-337.
  • [67]Yaguchi S, Katow H: Expression of tryptophan 5-hydroxylase gene during sea urchin neurogenesis and role of serotonergic nervous system in larval behavior. J Comp Neurol 2003, 466(2):219-229.
  • [68]Yaguchi S, Kanoh K, Amemiya S, Katow H: Initial analysis of immunochemical cell surface properties, location and formation of the serotonergic apical ganglion in sea urchin embryos. Dev Growth Differ 2000, 42(5):479-488.
  • [69]Yaguchi S, Yaguchi J, Burke RD: Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos. Development 2006, 133(12):2337-2346.
  • [70]Katow H, Suyemitsu T, Ooka S, Yaguchi J, Jin-Nai T, Kuwahara I, Katow T, Yaguchi S, Abe H: Development of a dopaminergic system in sea urchin embryos and larvae. J Exp Biol 2010, 213(Pt 16):2808-2819.
  • [71]Nakajima Y, Kaneko H, Murray G, Burke RD: Divergent patterns of neural development in larval echinoids and asteroids. Evol Dev 2004, 6(2):95-104.
  • [72]Smith LC, Rast JP, Brockton V, Terwilliger DP, Nair SV, Buckley KM, Majeske AJ: The sea urchin immune system. Invert Surviv J 2006, 3:25-39.
  • [73]Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, et al.: A genomic view of the sea urchin nervous system. Dev Biol 2006, 300(1):434-460.
  • [74]Burke RD, Osborne L, Wang D, Murabe N, Yaguchi S, Nakajima Y: Neuron-specific expression of a synaptotagmin gene in the sea urchin Strongylocentrotus purpuratus. J Comp Neurol 2006, 496(2):244-251.
  • [75]Lesser MP, Carleton KL, Bottger SA, Barry TM, Walker CW: Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6. Proc R Soc B 2011.
  • [76]Miller SE, Hadfield MG: Ontogeny of phototaxis and metamorphic competence in larvae of the nudibranch Phestilla-sibogae bergh (Gastropoda, Opisthobranchia). J Exp Mar Biol Ecol 1986, 97(1):95-112.
  • [77]Pennington JT, Emlet RB: Ontogenic and diel vertical migration of a planktonic echinoid larva, Dendraster-excentricus (eschscholtz) - occurrence, causes, and probable consequences. J Exp Mar Biol Ecol. 1986, 104(1–3):69-95.
  • [78]Roccheri MC, Tipa C, Bonaventura R, Matranga V: Physiological and induced apoptosis in sea urchin larvae undergoing metamorphosis. Int J Dev Biol 2002, 46(6):801-806.
  • [79]Jangi SM, Diaz-Perez JL, Ochoa-Lizarralde B, Martin-Ruiz I, Asumendi A, Perez-Yarza G, Gardeazabal J, Diaz-Ramon JL, Boyano MD: H1 histamine receptor antagonists induce genotoxic and caspase-2-dependent apoptosis in human melanoma cells. Carcinogenesis 2006, 27(9):1787-1796.
  • [80]Amarante-Mendes GP, Finucane DM, Martin SJ, Cotter TG, Salvesen GS, Green DR: Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death Differ 1998, 5(4):298-306.
  • [81]Pechenik JA, Gee CC: Onset of metamorphic competence in larvae of the gastropod Crepidula-fornicata (L), judged by a natural and an artificial cue. J Exp Mar Biol Ecol 1993, 167(1):59-72.
  • [82]Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, et al.: The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006, 314(5801):941-952.
  文献评价指标  
  下载次数:47次 浏览次数:20次