期刊论文详细信息
BMC Genomics
Complete genome sequence and analysis of Lactobacillus hokkaidonensis LOOC260T, a psychrotrophic lactic acid bacterium isolated from silage
Masanori Arita2  Yasukazu Nakamura3  Eli Kaminuma3  Masanori Tohno1  Yasuhiro Tanizawa3 
[1]National Agriculture and Food Research Organization, National Institute of Livestock and Grassland Science, Tochigi 329-2793, Japan
[2]RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
[3]Center for Information Biology, National Institute of Genetics, Shizuoka 411-8540, Japan
关键词: Integrative and conjugative element;    Mobile genetic element;    Pentose metabolism;    Cold adaptation;    Silage fermentation;    Lactic acid bacteria;   
Others  :  1149197
DOI  :  10.1186/s12864-015-1435-2
 received in 2014-12-01, accepted in 2015-03-06,  发布年份 2015
PDF
【 摘 要 】

Background

Lactobacillus hokkaidonensis is an obligate heterofermentative lactic acid bacterium, which is isolated from Timothy grass silage in Hokkaido, a subarctic region of Japan. This bacterium is expected to be useful as a silage starter culture in cold regions because of its remarkable psychrotolerance; it can grow at temperatures as low as 4°C. To elucidate its genetic background, particularly in relation to the source of psychrotolerance, we constructed the complete genome sequence of L. hokkaidonensis LOOC260T using PacBio single-molecule real-time sequencing technology.

Results

The genome of LOOC260T comprises one circular chromosome (2.28 Mbp) and two circular plasmids: pLOOC260-1 (81.6 kbp) and pLOOC260-2 (41.0 kbp). We identified diverse mobile genetic elements, such as prophages, integrated and conjugative elements, and conjugative plasmids, which may reflect adaptation to plant-associated niches. Comparative genome analysis also detected unique genomic features, such as genes involved in pentose assimilation and NADPH generation.

Conclusions

This is the first complete genome in the L. vaccinostercus group, which is poorly characterized, so the genomic information obtained in this study provides insight into the genetics and evolution of this group. We also found several factors that may contribute to the ability of L. hokkaidonensis to grow at cold temperatures. The results of this study will facilitate further investigation for the cold-tolerance mechanism of L. hokkaidonensis.

【 授权许可】

   
2015 Tanizawa et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150405032119547.pdf 3297KB PDF download
Figure 4. 120KB Image download
Figure 3. 57KB Image download
Figure 2. 57KB Image download
Figure 1. 111KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Tohno M, Kitahara M, Uegaki R, Irisawa T, Ohkuma M, Tajima K: Lactobacillus hokkaidonensis sp. nov., isolated from subarctic timothy grass (Phleum pratense L.) silage. Int J Syst Evol Microbiol 2013, 63:2526-2531.
  • [2]Pot B, Felis GE, De Bruyne K, Tsakalidou E, Papadimitriou K, Leisner J, et al.: The genus Lactobacillus. In Lactic Acid Bacteria: Biodiversity and Taxonomy. 1st edition. Edited by Holzapfel WH, Wood BJB. John Wiley & Sons, Hoboken, NJ; 2014:288-289.
  • [3]Okada S, Suzuki Y, Kozaki M: New heterofermentative Lactobacillus species with meso-diaminopimelic acid in peptidoglycan, Lactobacillus vaccinostercus Kozaki and Okada sp. nov. J Gen Appl Microbiol 1979, 25:215-221.
  • [4]Kleynmans U, Heinzl H, Hammes WP: Lactobacillus suebicus sp. nov., an Obligately Heterofermentative Lactobacillus Species Isolated from Fruit Mashes. Syst Appl Microbiol 1989, 11:267-271.
  • [5]Koort J, Murros A, Coenye T, Eerola S, Vandamme P, Sukura A, et al.: Lactobacillus oligofermentans sp. nov., Associated with Spoilage of Modified-Atmosphere-Packaged Poultry Products. Appl Environ Microbiol 2005, 71:4400-4406.
  • [6]Gu CT, Li CY, Yang LJ, Huo GC: Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough. Int J Syst Evol Microbiol 2013, 63:4698-4706.
  • [7]Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al.: Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013, 10:563-569.
  • [8]Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M: Exploring Lactobacillus plantarum Genome Diversity by Using Microarrays. J Bacteriol 2005, 187:6119-6127.
  • [9]Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL: Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 2009, 1:239-257.
  • [10]Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M: ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006, 34(Database issue):D32-6.
  • [11]van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM, Siezen RJ, et al.: Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 2005, 71:1223-1230.
  • [12]Fukao M, Oshima K, Morita H, Toh H, Suda W, Kim S-W, et al.: Genomic analysis by deep sequencing of the probiotic Lactobacillus brevis KB290 harboring nine plasmids reveals genomic stability. PLoS One 2013, 8:e60521.
  • [13]Tanizawa Y, Fujisawa T, Mochizuki T, Kaminuma E, Nakamura Y, Tohno M: Draft Genome Sequence of Lactobacillus oryzae Strain SG293T. Genome Announc 2014, 2: doi: 10.1128/genomeA.00861-14
  • [14]Wozniak RAF, Waldor MK: Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010, 8:552-563.
  • [15]Burrus V, Waldor MK: Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 2004, 155:376-386.
  • [16]Devirgiliis C, Coppola D, Barile S, Colonna B, Perozzi G: Characterization of the Tn916 conjugative transposon in a food-borne strain of Lactobacillus paracasei. Appl Environ Microbiol 2009, 75:3866-3871.
  • [17]Raftis EJ, Forde BM, Claesson MJ, O’Toole PW: Unusual genome complexity in Lactobacillus salivarius JCM1046. BMC Genomics 2014, 15:771. BioMed Central Full Text
  • [18]Bi D, Xu Z, Harrison EM, Tai C, Wei Y, He X, et al.: ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res 2012, 40(Database issue):D621-6.
  • [19]Roberts AP, Chandler M, Courvalin P, Guédon G, Mullany P, Pembroke T, et al.: Revised nomenclature for transposable genetic elements. Plasmid 2008, 60:167-173.
  • [20]Song L, Pan Y, Chen S, Zhang X: Structural characteristics of genomic islands associated with GMP synthases as integration hotspot among sequenced microbial genomes. Comput Biol Chem 2012, 36:62-70.
  • [21]van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E: Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 2002, 82:187-216.
  • [22]Chattopadhyay MK: Mechanism of bacterial adaptation to low temperature. J Biosci 2006, 31:157-165.
  • [23]Barria C, Malecki M, Arraiano CM: Bacterial adaptation to cold. Microbiology 2013, 159:2437-2443.
  • [24]Hoffmann T, Bremer E: Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 2011, 193:1552-1562.
  • [25]Angelidis AS, Smith GM: Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Appl Environ Microbiol 2003, 69:7492-7498.
  • [26]Annamalai T, Venkitanarayanan K: Role of proP and proU in betaine uptake by Yersinia enterocolitica under cold and osmotic stress conditions. Appl Environ Microbiol 2009, 75:1471-1477.
  • [27]Chaillou S, Champomier-Vergès M-C, Cornet M, Crutz-Le Coq A-M, Dudez A-M, Martin V, et al.: The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23 K. Nat Biotechnol 2005, 23:1527-1533.
  • [28]Pophaly SD, Singh R, Pophaly SD, Kaushik JK, Tomar SK: Current status and emerging role of glutathione in food grade lactic acid bacteria. Microb Cell Fact 2012, 11:114. BioMed Central Full Text
  • [29]Zhang J, Du G-C, Zhang Y, Liao X-Y, Wang M, Li Y, et al.: Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze-drying, and cold treatment. Appl Environ Microbiol 2010, 76:2989-2996.
  • [30]Heinl S, Wibberg D, Eikmeyer F, Szczepanowski R, Blom J, Linke B, et al.: Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. J Biotechnol 2012, 161:153-166.
  • [31]Hayashi T, Okada S, Kozaki M: Effects of some potential electron acceptors on glucose as a sole energy source for the growth of Lactobacillus vaccinostercus. J Gen Appl Microbiol 1982, 28:87-94.
  • [32]Warriner K, Morris JG: The effects of aeration on the bioreductive abilities of some heterofermentative lactic acid bacteria. Lett Appl Microbiol 1995, 20:323-327.
  • [33]Endo A, Tanaka N, Oikawa Y, Okada S, Dicks L: Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE). Curr Microbiol 2014, 68:531-535.
  • [34]Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E: Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014, 32:1216-1236.
  • [35]Weinberg ZG, Muck RE: New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol Rev 1996, 19:53-68.
  • [36]Danner H, Holzer M, Mayrhuber E, Braun R: Acetic acid increases stability of silage under aerobic conditions. Appl Environ Microbiol 2003, 69:562-567.
  • [37]Lee W-H, Kim M-D, Jin Y-S, Seo J-H: Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol 2013, 97:2761-2772.
  • [38]Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M: Engineering of Corynebacterium glutamicum with an NADPH-Generating Glycolytic Pathway for L-Lysine Production. Appl Environ Microbiol 2010, 76:7154-7160.
  • [39]Boyd DA, Cvitkovitch DG, Hamilton IR: Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans. J Bacteriol 1995, 177:2622-2627.
  • [40]Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, et al.: Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 2014, 24:1384-1395.
  • [41]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [42]Lin IH, Chen KB, Lin YH, Chang CH: Automated Prediction Of Bacterial Replication Origin (APBRO). In Proceedings of the 4th Asia Pacific Bioinformatics Conference. World Scientific Publishing Company, Taipei, Taiwan; 2006.
  • [43]Sugawara H, Ohyama A, Mori H, Kurokawa K: Microbial genome annotation pipeline (MiGAP) for diverse users. In Proceedings of the 20th International Conference . World Scientific Publishing Company, Pacifico Yokohama, Japan; 2009. S–001–1–2
  • [44]Noguchi H, Taniguchi T, Itoh T: MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 2008, 15:387-396.
  • [45]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955-964.
  • [46]Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35:3100-3108.
  • [47]Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007, 35(Web Server issue):W182-5.
  • [48]Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M: ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 2011, 12:R30. BioMed Central Full Text
  • [49]Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS: PHAST: a fast phage search tool. Nucleic Acids Res 2011, 39(Web Server issue):W347-52.
  • [50]Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007, 35(Web Server issue):W52-7.
  • [51]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [52]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, 28:2731-2739.
  • [53]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al.: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19:1639-1645.
  • [54]Pritchard L, White JA, Birch PRJ, Toth IK: GenomeDiagram: a python package for the visualization of large-scale genomic data. Bioinformatics 2006, 22:616-617.
  文献评价指标  
  下载次数:9次 浏览次数:4次