期刊论文详细信息
BMC Research Notes
Molars and incisors: show your microarray IDs
Agnès Bloch-Zupan2  Pascal Dollé1  Doulaye Dembelé3  Christelle Thibault-Carpentier3  Marie Paschaki1  Virginie Laugel-Haushalter1 
[1] Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, BP 10142, 1 rue Laurent Fries, Illkirch Cedex, 67404, France;Reference Centre for Orodental Manifestations of Rare Diseases, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France;Microarray and Sequencing Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch-Strasbourg, France
关键词: Microarray;    Mouse;    Gene expression;    Incisor;    Molar;    Tooth development;   
Others  :  1143150
DOI  :  10.1186/1756-0500-6-113
 received in 2012-09-17, accepted in 2013-03-08,  发布年份 2013
PDF
【 摘 要 】

Background

One of the key questions in developmental biology is how, from a relatively small number of conserved signaling pathways, is it possible to generate organs displaying a wide range of shapes, tissue organization, and function. The dentition and its distinct specific tooth types represent a valuable system to address the issues of differential molecular signatures. To identify such signatures, we performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5).

Results

231 genes were identified as being differentially expressed between mandibular incisors and molars, with a fold change higher than 2 and a false discovery rate lower than 0.1, whereas only 96 genes were discovered as being differentially expressed between mandibular and maxillary molars. Numerous genes belonging to specific signaling pathways (the Hedgehog, Notch, Wnt, FGF, TGFβ/BMP, and retinoic acid pathways), and/or to the homeobox gene superfamily, were also uncovered when a less stringent fold change threshold was used. Differential expressions for 10 out of 12 (mandibular incisors versus molars) and 9 out of 10 selected genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of incisor versus molar differentially expressed genes revealed that 143 genes belonged to 9 networks with intermolecular connections. Networks with the highest significance scores were centered on the TNF/NFκB complex and the ERK1/2 kinases. Two networks ERK1/2 kinases and tretinoin were involved in differential molar morphogenesis.

Conclusion

These data allowed us to build several regulatory networks that may distinguish incisor versus molar identity, and may be useful for further investigations of these tooth-specific ontogenetic programs. These programs may be dysregulated in transgenic animal models and related human diseases leading to dental anomalies.

【 授权许可】

   
2013 Laugel-Haushalter et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329011300565.pdf 1268KB PDF download
Figure 5. 63KB Image download
Figure 4. 54KB Image download
Figure 3. 68KB Image download
Figure 2. 56KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I: Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 1999, 147(1):105-120.
  • [2]Tummers M, Thesleff I: Observations on continuously growing roots of the sloth and the K14-Eda transgenic mice indicate that epithelial stem cells can give rise to both the ameloblast and root epithelium cell lineage creating distinct tooth patterns. Evol Dev 2008, 10(2):187-195.
  • [3]Cobourne MT, Mitsiadis T: Neural crest cells and patterning of the mammalian dentition. J Exp Zoolog B Mol Dev Evol 2006, 306(3):251-260.
  • [4]Knight RD, Schilling TF: Cranial neural crest and development of the head skeleton. Adv Exp Med Biol 2006, 589:120-133.
  • [5]Noden DM, Schneider RA: Neural crest cells and the community of plan for craniofacial development: historical debates and current perspectives. Adv Exp Med Biol 2006, 589:1-23.
  • [6]Peters H, Balling R T: Where and how to make them. Trends Genet 1999, 15(2):59-65.
  • [7]Thesleff I: Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 2003, 116(9):1647-1648.
  • [8]Thesleff I, Aberg T: Molecular regulation of tooth development. Bone 1999, 25(1):123-125.
  • [9]Tucker AS, Sharpe PT: Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res 1999, 78(4):826-834.
  • [10]Cobourne MT, Sharpe PT: Sonic hedgehog signaling and the developing tooth. Curr Top Dev Biol 2005, 65:255-287.
  • [11]Dassule HR, Lewis P, Bei M, Maas R, McMahon AP: Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 2000, 127(22):4775-4785.
  • [12]Hardcastle Z, Hui CC, Sharpe PT: The Shh signalling pathway in early tooth development. Cell Mol Biol (Noisy-le-Grand) 1999, 45(5):567-578.
  • [13]Nie X, Luukko K, Kettunen P: BMP signalling in craniofacial development. Int J Dev Biol 2006, 50(6):511-521.
  • [14]Nie X, Luukko K, Kettunen P: FGF signalling in craniofacial development and developmental disorders. Oral Dis 2006, 12(2):102-111.
  • [15]Pispa J, Mikkola ML, Mustonen T, Thesleff I: Ectodysplasin, Edar and TNFRSF19 are expressed in complementary and overlapping patterns during mouse embryogenesis. Gene Expr Patterns 2003, 3(5):675-679.
  • [16]Tummers M, Thesleff I: The importance of signal pathway modulation in all aspects of tooth development. J Exp Zoolog B Mol Dev Evol 2009, 312B(4):309-319.
  • [17]Thomas BL, Tucker AS, Qui M, Ferguson CA, Hardcastle Z, Rubenstein JL, Sharpe PT: Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development 1997, 124(23):4811-4818.
  • [18]Tucker AS, Al Khamis A, Sharpe PT: Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme. Dev Dyn 1998, 212(4):533-539.
  • [19]Mitsiadis TA, Drouin J: Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes. Dev Biol 2008, 313(2):887-896.
  • [20]Mucchielli ML, Mitsiadis TA, Raffo S, Brunet JF, Proust JP, Goridis C: Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev Biol 1997, 189(2):275-284.
  • [21]Lu MF, Pressman C, Dyer R, Johnson RL, Martin JF: Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 1999, 401(6750):276-278.
  • [22]Mark MP, Bloch-Zupan A, Ruch JV: Effects of retinoids on tooth morphogenesis and cytodifferentiations, in vitro. Int J Dev Biol 1992, 36(4):517-526.
  • [23]Jernvall J, Thesleff I: Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 2000, 92(1):19-29.
  • [24]Tucker AS, Yamada G, Grigoriou M, Pachnis V, Sharpe PT: Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development 1999, 126(1):51-61.
  • [25]Coudert AE, Pibouin L, Vi-Fane B, Thomas BL, Macdougall M, Choudhury A, Robert B, Sharpe PT, Berdal A, Lezot F: Expression and regulation of the Msx1 natural antisense transcript during development. Nucleic Acids Res 2005, 33(16):5208-5218.
  • [26]James CT, Ohazama A, Tucker AS, Sharpe PT: Tooth development is independent of a Hox patterning programme. Dev Dyn 2002, 225(3):332-335.
  • [27]Uchibe K, Shimizu H, Yokoyama S, Kuboki T, Asahara H: Identification of novel transcription-regulating genes expressed during murine molar development. Dev Dyn 2012, 241(7):1217-1226.
  • [28]Barbosa AC, Funato N, Chapman S, McKee MD, Richardson JA, Olson EN, Yanagisawa H: Hand transcription factors cooperatively regulate development of the distal midline mesenchyme. Dev Biol 2007, 310(1):154-168.
  • [29]Mitsiadis TA, Angeli I, James C, Lendahl U, Sharpe PT: Role of Islet1 in the patterning of murine dentition. Development 2003, 130(18):4451-4460.
  • [30]Thesleff I, Jernvall J: The enamel knot: a putative signaling center regulating tooth development. Cold Spring Harb Symp Quant Biol 1997, 62:257-267.
  • [31]Kollar EJ, Baird GR: The influence of the dental papilla on the development of tooth shape in embryonic mouse tooth germs. J Embryol Exp Morphol 1969, 21(1):131-148.
  • [32]Kollar EJ, Baird GR: Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J Embryol Exp Morphol 1970, 24(1):173-186.
  • [33]Caton J, Tucker AS: Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat 2009, 214(4):502-515.
  • [34]Fleischmannova J, Matalova E, Tucker AS, Sharpe PT: Mouse models of tooth abnormalities. Eur J Oral Sci 2008, 116(1):1-10.
  • [35]Bloch-Zupan A, Sedano H, Scully C: Dento/Oro/Craniofacial Anomalies and Genetics. 1st edition. London: Elsevier Inc; 2012.
  • [36]Hennekam JRCM, Krantz I, Allanson J: Gorlin's Syndromes of the Head and Neck. 5th edition. USA: Oxford University Press; 2010.
  • [37]Gregory-Evans CY, Moosajee M, Hodges MD, Mackay DS, Game L, Vargesson N, Bloch-Zupan A, Ruschendorf F, Santos-Pinto L, Wackens G: SNP genome scanning localizes oto-dental syndrome to chromosome 11q13 and microdeletions at this locus implicate FGF3 in dental and inner-ear disease and FADD in ocular coloboma. Hum Mol Genet 2007, 16(20):3482-3493.
  • [38]Sirmaci A, Spiliopoulos M, Brancati F, Powell E, Duman D, Abrams A, Bademci G, Agolini E, Guo S, Konuk B: Mutations in ANKRD11 Cause KBG Syndrome, Characterized by Intellectual Disability, Skeletal Malformations, and Macrodontia. Am J Hum Genet 2011, 89(2):289-294.
  • [39]Rosenfeld JA, Ballif BC, Lucas A, Spence EJ, Powell C, Aylsworth AS, Torchia BA, Shaffer LG: Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS One 2009, 4(8):e6568.
  • [40]Britanova O, Depew MJ, Schwark M, Thomas BL, Miletich I, Sharpe P, Tarabykin V: Satb2 haploinsufficiency phenocopies 2q32-q33 deletions, whereas loss suggests a fundamental role in the coordination of jaw development. Am J Hum Genet 2006, 79(4):668-678.
  • [41]Bloch-Zupan A, Jamet X, Etard C, Laugel V, Muller J, Geoffroy V, Strauss JP, Pelletier V, Marion V, Poch O: Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet 2011, 89(6):773-781.
  • [42]Tissier-Seta JP, Mucchielli ML, Mark M, Mattei MG, Goridis C, Brunet JF: Barx1, a new mouse homeodomain transcription factor expressed in cranio-facial ectomesenchyme and the stomach. Mech Dev 1995, 51(1):3-15.
  • [43]Nonomura K, Takahashi M, Wakamatsu Y, Takano-Yamamoto T, Osumi N: Dynamic expression of Six family genes in the dental mesenchyme and the epithelial ameloblast stem/progenitor cells during murine tooth development. J Anat 2010, 216(1):80-91.
  • [44]Abe M, Tamamura Y, Yamagishi H, Maeda T, Kato J, Tabata MJ, Srivastava D, Wakisaka S, Kurisu K: Tooth-type specific expression of dHAND/Hand2: possible involvement in murine lower incisor morphogenesis. Cell Tissue Res 2002, 310(2):201-212.
  • [45]Haldeman-Englert CR, Biser A, Zackai EH, Ming JE: A 223-kb de novo deletion of PAX9 in a patient with oligodontia. J Craniofac Surg 2010, 21(3):837-839.
  • [46]Grigoriou M, Tucker AS, Sharpe PT, Pachnis V: Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development 1998, 125(11):2063-2074.
  • [47]Li J, Huang X, Xu X, Mayo J, Bringas P Jr, Jiang R, Wang S, Chai Y: SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development 2011, 138(10):1977-1989.
  • [48]Lin D, Huang Y, He F, Gu S, Zhang G, Chen Y, Zhang Y: Expression survey of genes critical for tooth development in the human embryonic tooth germ. Dev Dyn 2007, 236(5):1307-1312.
  • [49]Kettunen P, Furmanek T, Chaulagain R, Kvinnsland IH, Luukko K: Developmentally regulated expression of intracellular Fgf11-13, hormone-like Fgf15 and canonical Fgf16, -17 and -20 mRNAs in the developing mouse molar tooth. Acta Odontol Scand 2011, 69(6):360-366.
  • [50]Shoji H, Ito T, Wakamatsu Y, Hayasaka N, Ohsaki K, Oyanagi M, Kominami R, Kondoh H, Takahashi N: Regionalized expression of the Dbx family homeobox genes in the embryonic CNS of the mouse. Mech Dev 1996, 56(1–2):25-39.
  • [51]Shibaguchi T, Kato J, Abe M, Tamamura Y, Tabata MJ, Liu JG, Iwamoto M, Wakisaka S, Wanaka A, Kurisu K: Expression and role of Lhx8 in murine tooth development. Arch Histol Cytol 2003, 66(1):95-108.
  • [52]Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Lesot H: Expression patterns of BMPRs in the developing mouse molar. Cell Tissue Res 2006, 324(1):33-40.
  • [53]Cho KW, Cai J, Kim HY, Hosoya A, Ohshima H, Choi KY, Jung HS: ERK activation is involved in tooth development via FGF10 signaling. J Exp Zool B Mol Dev Evol 2009, 312(8):901-911.
  • [54]Cobourne MT, Miletich I, Sharpe PT: Restriction of sonic hedgehog signalling during early tooth development. Development 2004, 131(12):2875-2885.
  • [55]Nakashima M, Toyono T, Murakami T, Akamine A: Transforming growth factor-beta superfamily members expressed in rat incisor pulp. Arch Oral Biol 1998, 43(9):745-751.
  • [56]Wang W, Hart PS, Piesco NP, Lu X, Gorry MC, Hart TC: Aquaporin expression in developing human teeth and selected orofacial tissues. Calcif Tissue Int 2003, 72(3):222-227.
  • [57]Iwasaki K, Bajenova E, Somogyi-Ganss E, Miller M, Nguyen V, Nourkeyhani H, Gao Y, Wendel M, Ganss B: Amelotin–a Novel Secreted, Ameloblast-specific Protein. J Dent Res 2005, 84(12):1127-1132.
  • [58]Takahashi KF, Kiyoshima T, Kobayashi I, Xie M, Yamaza H, Fujiwara H, Ookuma Y, Nagata K, Wada H, Sakai T: Protogenin, a new member of the immunoglobulin superfamily, is implicated in the development of the mouse lower first molar. BMC Dev Biol 2010, 10:115.
  • [59]Aruga J: Slitrk6 expression profile in the mouse embryo and its relationship to that of Nlrr3. Gene Expr Patterns 2003, 3(6):727-733.
  • [60]Paiva KB, Silva-Valenzuela M, Massironi SM, Ko GM, Siqueira FM, Nunes FD: Differential Shh, Bmp and Wnt gene expressions during craniofacial development in mice. Acta Histochem 2010, 112(5):508-517.
  • [61]Park KH, Han DI, Rhee YH, Jeong SJ, Kim SH, Park YG: Protein kinase C betaII and delta/theta play critical roles in bone morphogenic protein-4-stimulated osteoblastic differentiation of MC3T3-E1 cells. Biochem Biophys Res Commun 2010, 403(1):7-12.
  • [62]Raju K, Tang S, Dube ID, Kamel-Reid S, Bryce DM, Breitman ML: Characterization and developmental expression of Tlx-1, the murine homolog of HOX11. Mech Dev 1993, 44(1):51-64.
  • [63]Tahayato A, Dolle P, Petkovich M: Cyp26C1 encodes a novel retinoic acid-metabolizing enzyme expressed in the hindbrain, inner ear, first branchial arch and tooth buds during murine development. Gene Expr Patterns 2003, 3(4):449-454.
  • [64]Mizuno N, Shiba H, Xu WP, Inui T, Fujita T, Kajiya M, Takeda K, Hasegawa N, Kawaguchi H, Kurihara H: Effect of neurotrophins on differentiation, calcification and proliferation in cultures of human pulp cells. Cell Biol Int 2007, 31(12):1462-1469.
  • [65]Liu D, Yao S, Wise GE: Regulation of SFRP-1 expression in the rat dental follicle. Connect Tissue Res 2012, 53(5):366-372.
  • [66]Liu D, Wise GE: A DNA microarray analysis of chemokine and receptor genes in the rat dental follicle–role of secreted frizzled-related protein-1 in osteoclastogenesis. Bone 2007, 41(2):266-272.
  • [67]Maas R, Bei M: The genetic control of early tooth development. Crit Rev Oral Biol Med 1997, 8(1):4-39.
  • [68]Uz E, Alanay Y, Aktas D, Vargel I, Gucer S, Tuncbilek G, von Eggeling F, Yilmaz E, Deren O, Posorski N: Disruption of ALX1 causes extreme microphthalmia and severe facial clefting: expanding the spectrum of autosomal-recessive ALX-related frontonasal dysplasia. Am J Hum Genet 2010, 86(5):789-796.
  • [69]Biben C, Wang CC, Harvey RP: NK-2 class homeobox genes and pharyngeal/oral patterning: Nkx2-3 is required for salivary gland and tooth morphogenesis. Int J Dev Biol 2002, 46(4):415-422.
  • [70]Lezot F, Thomas B, Greene SR, Hotton D, Yuan ZA, Castaneda B, Bolanos A, Depew M, Sharpe P, Gibson CW: Physiological implications of DLX homeoproteins in enamel formation. J Cell Physiol 2008, 216(3):688-697.
  • [71]Cobourne MT, Sharpe PT: Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol 2003, 48(1):1-14.
  • [72]Sperber SM, Dawid IB: barx1 is necessary for ectomesenchyme proliferation and osteochondroprogenitor condensation in the zebrafish pharyngeal arches. Dev Biol 2008, 321(1):101-110.
  • [73]Hardcastle Z, Mo R, Hui CC, Sharpe PT: The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development 1998, 125(15):2803-2811.
  • [74]Denaxa M, Sharpe PT, Pachnis V: The LIM homeodomain transcription factors Lhx6 and Lhx7 are key regulators of mammalian dentition. Dev Biol 2009, 333(2):324-336.
  • [75]Tucker A, Sharpe P: The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 2004, 5(7):499-508.
  • [76]Bloch-Zupan A, Decimo D, Loriot M, Mark MP, Ruch JV: Expression of nuclear retinoic acid receptors during mouse odontogenesis. Differentiation 1994, 57(3):195-203.
  • [77]Bloch-Zupan A, Mark MP, Weber B, Ruch JV: In vitro effects of retinoic acid on mouse incisor development. Arch Oral Biol 1994, 39(10):891-900.
  • [78]Charles C, Lazzari V, Tafforeau P, Schimmang T, Tekin M, Klein O, Viriot L: Modulation of Fgf3 dosage in mouse and men mirrors evolution of mammalian dentition. Proc Natl Acad Sci U S A 2009, 106(52):22364-22368.
  • [79]Kantaputra PN, Gorlin RJ: Double dens invaginatus of molarized maxillary central incisors, premolarization of maxillary lateral incisors, multituberculism of the mandibular incisors, canines and first premolar, and sensorineural hearing loss. Clin Dysmorphol 1992, 1(3):128-136.
  • [80]Charles C, Hovorakova M, Ahn Y, Lyons DB, Marangoni P, Churava S, Biehs B, Jheon A, Lesot H, Balooch G: Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling. Development 2011, 138(18):4063-4073.
  • [81]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210.
  文献评价指标  
  下载次数:25次 浏览次数:11次