期刊论文详细信息
BMC Evolutionary Biology
An evolutionary ratchet leading to loss of elongation factors in eukaryotes
Vasili Hauryliuk4  Piotr Kamenski3  Martin Carr2  Tanel Tenson1  Axel Soosaar1  Ivan Chicherin3  Anton Kuzmenko3  Gemma C Atkinson4 
[1] University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia;School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;Department of Molecular Biology, Faculty of Biology, Moscow State University, Moscow, Russia;Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
关键词: Eukaryotes;    Molecular evolution;    GEF;    GTPase;    Elongation factor;    Ribosome;    eEF1B;    EFL;    eEF1A;   
Others  :  857924
DOI  :  10.1186/1471-2148-14-35
 received in 2013-09-10, accepted in 2014-02-17,  发布年份 2014
PDF
【 摘 要 】

Background

The GTPase eEF1A is the eukaryotic factor responsible for the essential, universal function of aminoacyl-tRNA delivery to the ribosome. Surprisingly, eEF1A is not universally present in eukaryotes, being replaced by the paralog EFL independently in multiple lineages. The driving force behind this unusually frequent replacement is poorly understood.

Results

Through sequence searching of genomic and EST databases, we find a striking association of eEF1A replacement by EFL and loss of eEF1A’s guanine exchange factor, eEF1Bα, suggesting that EFL is able to spontaneously recharge with GTP. Sequence conservation and homology modeling analyses indicate several sequence regions that may be responsible for EFL’s lack of requirement for eEF1Bα.

Conclusions

We propose that the unusual pattern of eEF1A, eEF1Bα and EFL presence and absence can be explained by a ratchet-like process: if either eEF1A or eEF1Bα diverges beyond functionality in the presence of EFL, the system is unable to return to the ancestral, eEF1A:eEFBα-driven state.

【 授权许可】

   
2014 Atkinson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723085721805.pdf 2735KB PDF download
65KB Image download
146KB Image download
79KB Image download
162KB Image download
【 图 表 】

【 参考文献 】
  • [1]Riis B, Rattan SI, Clark BF, Merrick WC: Eukaryotic protein elongation factors. Trends Biochem Sci 1990, 15(11):420-424.
  • [2]Thanbichler M, Bock A, Goody RS: Kinetics of the interaction of translation factor SelB from Escherichia coli with guanosine nucleotides and selenocysteine insertion sequence RNA. J Biol Chem 2000, 275(27):20458-20466.
  • [3]Gromadski KB, Schummer T, Stromgaard A, Knudsen CR, Kinzy TG, Rodnina MV: Kinetics of the interactions between yeast elongation factors 1A and 1Balpha, guanine nucleotides, and aminoacyl-tRNA. J Biol Chem 2007, 282(49):35629-35637.
  • [4]Gromadski KB, Wieden HJ, Rodnina MV: Kinetic mechanism of elongation factor Ts-catalyzed nucleotide exchange in elongation factor Tu. Biochemistry 2002, 41(1):162-169.
  • [5]Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O: eEF1B: at the dawn of the 21st century. Biochim Biophys Acta 2006, 1759(1–2):13-31.
  • [6]Slobin LI, Moller W: Purification and properties of an elongation factor functionally analogous to bacterial elongation factor Ts from embryos of Artemia salina. Eur J Biochem 1978, 84(1):69-77.
  • [7]Andersen GR, Pedersen L, Valente L, Chatterjee I, Kinzy TG, Kjeldgaard M, Nyborg J: Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Balpha. Mol Cell 2000, 6(5):1261-1266.
  • [8]Andersen GR, Valente L, Pedersen L, Kinzy TG, Nyborg J: Crystal structures of nucleotide exchange intermediates in the eEF1A-eEF1Balpha complex. Nat Struct Biol 2001, 8(6):531-534.
  • [9]Sasikumar AN, Perez WB, Kinzy TG: The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA 2012, 3(4):543-555.
  • [10]Visweswaraiah J, Lageix S, Castilho BA, Izotova L, Kinzy TG, Hinnebusch AG, Sattlegger E: Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity. J Biol Chem 2011, 286(42):36568-36579.
  • [11]Keeling P, Inagaki Y: A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1alpha. Proc Natl Acad Sci U S A 2004, 101(43):15380-15385.
  • [12]Kamikawa R, Brown MW, Nishimura Y, Sako Y, Heiss AA, Yubuki N, Gawryluk R, Simpson AG, Roger AJ, Hashimoto T, Inagaki Y, et al.: Parallel re-modeling of EF-1alpha function: divergent EF-1alpha genes co-occur with EFL genes in diverse distantly related eukaryotes. BMC Evol Biol 2013, 13:131. BioMed Central Full Text
  • [13]Gile GH, Faktorova D, Castlejohn CA, Burger G, Lang BF, Farmer MA, Lukes J, Keeling PJ: Distribution and phylogeny of EFL and EF-1alpha in Euglenozoa suggest ancestral co-occurrence followed by differential loss. PLoS ONE 2009, 4(4):e5162.
  • [14]Ishitani Y, Kamikawa R, Yabuki A, Tsuchiya M, Inagaki Y, Takishita K: Evolution of elongation factor-like (EFL) protein in Rhizaria is revised by radiolarian EFL gene sequences. J Eukaryot Microbiol 2012, 59(4):367-373.
  • [15]Kamikawa R, Inagaki Y, Sako Y: Direct phylogenetic evidence for lateral transfer of elongation factor-like gene. Proc Natl Acad Sci U S A 2008, 105(19):6965-6969.
  • [16]Kamikawa R, Yabuki A, Nakayama T, Ishida K, Hashimoto T, Inagaki Y: Cercozoa comprises both EF-1alpha-containing and EFL-containing members. Eur J Protistol 2011, 47(1):24-28.
  • [17]Sakaguchi M, Takishita K, Matsumoto T, Hashimoto T, Inagaki Y: Tracing back EFL gene evolution in the cryptomonads-haptophytes assemblage: separate origins of EFL genes in haptophytes, photosynthetic cryptomonads, and goniomonads. Gene 2009, 441(1–2):126-131.
  • [18]Szabova J, Ruzicka P, Verner Z, Hampl V, Lukes J: Experimental examination of EFL and MATX eukaryotic horizontal gene transfers: coexistence of mutually exclusive transcripts predates functional rescue. Mol Biol Evol 2011, 28(8):2371-2378.
  • [19]Henk DA, Fisher MC: The gut fungus Basidiobolus ranarum has a large genome and different copy numbers of putatively functionally redundant elongation factor genes. PLoS ONE 2012, 7(2):e31268.
  • [20]Kamikawa R, Sakaguchi M, Matsumoto T, Hashimoto T, Inagaki Y: Rooting for the root of elongation factor-like protein phylogeny. Mol Phylogenet Evol 2010, 56(3):1082-1088.
  • [21]Cocquyt E, Verbruggen H, Leliaert F, Zechman FW, Sabbe K, De Clerck O: Gain and loss of elongation factor genes in green algae. BMC Evol Biol 2009, 9:39. BioMed Central Full Text
  • [22]Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV, Weir JR, Ramakrishnan V: The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 2009, 326(5953):688-694.
  • [23]Baldauf SL, Palmer JD: Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A 1993, 90(24):11558-11562.
  • [24]Ozturk SB, Kinzy TG: Guanine nucleotide exchange factor independence of the G-protein eEF1A through novel mutant forms and biochemical properties. J Biol Chem 2008, 283(34):23244-23253.
  • [25]Kinzy TG, Woolford JL Jr: Increased expression of Saccharomyces cerevisiae translation elongation factor 1 alpha bypasses the lethality of a TEF5 null allele encoding elongation factor 1 beta. Genetics 1995, 141(2):481-489.
  • [26]Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, et al.: Genome evolution in yeasts. Nature 2004, 430(6995):35-44.
  • [27]Atkinson GC, Baldauf SL, Hauryliuk V: Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evol Biol 2008, 8(1):290. BioMed Central Full Text
  • [28]Saito K, Kobayashi K, Wada M, Kikuno I, Takusagawa A, Mochizuki M, Uchiumi T, Ishitani R, Nureki O, Ito K: Omnipotent role of archaeal elongation factor 1 alpha (EF1alpha in translational elongation and termination, and quality control of protein synthesis. Proc Natl Acad Sci U S A 2010, 107(45):19242-19247.
  • [29]Ito T, Marintchev A, Wagner G: Solution structure of human initiation factor eIF2alpha reveals homology to the elongation factor eEF1B. Structure 2004, 12(9):1693-1704.
  • [30]Ruiz-Trillo I, Burger G, Holland PW, King N, Lang BF, Roger AJ, Gray MW: The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 2007, 23(3):113-118.
  • [31]Hertz-Fowler C, Peacock CS, Wood V, Aslett M, Kerhornou A, Mooney P, Tivey A, Berriman M, Hall N, Rutherford K, Parkhill J, Ivens AC, Rajandream MA, Barrell B, et al.: GeneDB: a resource for prokaryotic and eukaryotic organisms. Nucleic Acids Res 2004, 32(Database issue):D339-D343.
  • [32]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A, et al.: The Pfam protein families database. Nucleic Acids Res 2010, 38(Database issue):D211-D222.
  • [33]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33(2):511-518.
  • [34]Atkinson GC, Baldauf SL: Evolution of elongation factor G and the origins of mitochondrial and chloroplast forms. Mol Biol Evol 2011, 28(3):1281-1292.
  • [35]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [36]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17(8):754-755.
  • [37]Miller MA, Pfeiffer W, Schwartz T: Creating the CIPRES Science Gateway for inference of large phylogenetic trees. New Orleans, LA: Gateway Computing Environments Workshop (GCE): 2010; 2010:1-8.
  • [38]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22(2):195-201.
  文献评价指标  
  下载次数:66次 浏览次数:47次