期刊论文详细信息
BMC Evolutionary Biology
Molecular pedigree reconstruction and estimation of evolutionary parameters in a wild Atlantic salmon river system with incomplete sampling: a power analysis
Craig R Primmer1  Philip McGinnity3  Ger Rogan4  Thomas Reed3  Paulo A Prodőhl5  Russell Poole4  Thomas F Cross3  Deirdre Cotter4  Susan E Johnston2  Tutku Aykanat1 
[1] Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland;Present address: Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh, UK;Aquaculture & Fisheries Development Centre, School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland;Marine Institute, Furnace, Newport, Co., Mayo, Ireland;Institute for Global Food Security, School of Biological Science, Medical Biology Centre, Queen’s University, Belfast, Northern Ireland
关键词: Reproductive success;    Power analysis;    Parentage assignment;    MasterBayes;    Incomplete sampling;    Heritability;    Atlantic salmon;   
Others  :  857486
DOI  :  10.1186/1471-2148-14-68
 received in 2013-10-18, accepted in 2014-03-24,  发布年份 2014
PDF
【 摘 要 】

Background

Pedigree reconstruction using genetic analysis provides a useful means to estimate fundamental population biology parameters relating to population demography, trait heritability and individual fitness when combined with other sources of data. However, there remain limitations to pedigree reconstruction in wild populations, particularly in systems where parent-offspring relationships cannot be directly observed, there is incomplete sampling of individuals, or molecular parentage inference relies on low quality DNA from archived material. While much can still be inferred from incomplete or sparse pedigrees, it is crucial to evaluate the quality and power of available genetic information a priori to testing specific biological hypotheses. Here, we used microsatellite markers to reconstruct a multi-generation pedigree of wild Atlantic salmon (Salmo salar L.) using archived scale samples collected with a total trapping system within a river over a 10 year period. Using a simulation-based approach, we determined the optimal microsatellite marker number for accurate parentage assignment, and evaluated the power of the resulting partial pedigree to investigate important evolutionary and quantitative genetic characteristics of salmon in the system.

Results

We show that at least 20 microsatellites (ave. 12 alleles/locus) are required to maximise parentage assignment and to improve the power to estimate reproductive success and heritability in this study system. We also show that 1.5 fold differences can be detected between groups simulated to have differing reproductive success, and that it is possible to detect moderate heritability values for continuous traits (h2 ~ 0.40) with more than 80% power when using 28 moderately to highly polymorphic markers.

Conclusion

The methodologies and work flow described provide a robust approach for evaluating archived samples for pedigree-based research, even where only a proportion of the total population is sampled. The results demonstrate the feasibility of pedigree-based studies to address challenging ecological and evolutionary questions in free-living populations, where genealogies can be traced only using molecular tools, and that significant increases in pedigree assignment power can be achieved by using higher numbers of markers.

【 授权许可】

   
2014 Aykanat et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723081814452.pdf 1646KB PDF download
91KB Image download
58KB Image download
66KB Image download
46KB Image download
30KB Image download
66KB Image download
36KB Image download
153KB Image download
【 图 表 】

【 参考文献 】
  • [1]Jones AG, Ardren WR: Methods of parentage analysis in natural populations. Mol Ecol 2003, 12:2511-2523.
  • [2]Kruuk LE, Hill WG: Introduction. Evolutionary dynamics of wild populations: the use of long-term pedigree data. Proc Biol Sci 2008, 275(1635):593-596.
  • [3]Kruuk LEB: Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc B 2004, 359:873-890.
  • [4]George AW, Visscher PM, Haley CS: Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach. Genetics 2000, 156(4):2081-2092.
  • [5]Almasy L, Blangero J: Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998, 62(5):1198-1211.
  • [6]Pemberton JM: Wild pedigrees: the way forward. Proc Biol Sci 2008, 275(1635):613-621.
  • [7]Ozgul A, Tuljapurkar S, Benton TG, Pemberton JM, Clutton-Brock TH, Coulson T: The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 2009, 325(5939):464-467.
  • [8]Bensch S, Hasselquist D, Vonschantz T: Genetic similarity between parents predicts hatching failure - nonincestuous inbreeding in the Great Reed Warbler. Evolution 1994, 48(2):317-326.
  • [9]Slate J, Kruuk LE, Marshall TC, Pemberton JM, Clutton-Brock TH: Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc Biol Sci 2000, 267(1453):1657-1662.
  • [10]Primmer CR, Moller AP, Ellegren H: Resolving genetic relationships with microsatellite markers: a parentage testing system for the swallow Hirundo rustica. Mol Ecol 1995, 4(4):493-498.
  • [11]DiBattista JD, Feldheim KA, Thibert-Plante X, Gruber SH, Hendry AP: A genetic assessment of polyandry and breeding-site fidelity in lemon sharks. Mol Ecol 2008, 17(14):3337-3351.
  • [12]Garant D, Kruuk LEB, Wilkin TA, McCleery RH, Sheldon BC: Evolution driven by differential dispersal within a wild bird population. Nature 2005, 433:60-65.
  • [13]Dibattista JD, Feldheim KA, Garant D, Gruber SH, Hendry AP: Evolutionary potential of a large marine vertebrate: quantitative genetic parameters in a wild population. Evolution 2009, 63(4):1051-1067.
  • [14]Johnston SE, Beraldi D, McRae AF, Pemberton JM, Slate J: Horn type and horn length genes map to the same chromosomal region in Soay sheep. Heredity (Edinb) 2010, 104(2):196-205.
  • [15]Slate J, Visscher PM, MacGregor S, Stevens D, Tate ML, Pemberton JM: A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus). Genetics 2002, 162(4):1863-1873.
  • [16]Charmantier A, Reale D: How do misassigned paternities affect the estimation of heritability in the wild? Mol Ecol 2005, 14(9):2839-2850.
  • [17]Dickerson BR, Willson MF, Bentzen P, Quinn TP: Heritability of life history and morphological traits in a wild pink salmon population assessed by DNA parentage analysis. Trans Am Fish Soc 2005, 134(5):1323-1328.
  • [18]Herbinger CM, O’Reilly PT, Verspoor E: Unravelling first-generation pedigrees in wild endangered salmon populations using molecular genetic markers. Mol Ecol 2006, 15(8):2261-2275.
  • [19]Araki H, Cooper B, Blouin MS: Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 2007, 318:100-103.
  • [20]Araki H, Cooper B, Blouin MS: Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biol Lett 2009, 5(5):621-624.
  • [21]Serbezov D, Bernatchez L, Olsen EM, Vollestad LA: Mating patterns and determinants of individual reproductive success in brown trout (Salmo trutta) revealed by parentage analysis of an entire stream living population. Mol Ecol 2010, 19(15):3193-3205.
  • [22]Christie MR, Marine ML, French RA, Blouin MS: Genetic adaptation to captivity can occur in a single generation. Proc Natl Acad Sci U S A 2012, 109(1):238-242.
  • [23]Anderson JH, Faulds PL, Atlas WI, Quinn TP: Reproductive success of captively bred and naturally spawned Chinook salmon colonizing newly accessible habitat. Evol Appl 2013, 6(2):165-179.
  • [24]Laikre L, Schwartz MK, Waples RS, Ryman N, Ge MWG: Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol Evol 2010, 25(9):520-529.
  • [25]McGinnity P, Jennings E, DeEyto E, Allott N, Samuelsson P, Rogan G, Whelan K, Cross T: Impact of naturally spawning captive-bred Atlantic salmon on wild populations: depressed recruitment and increased risk of climate-mediated extinction. Proc Biol Sci 2009, 276(1673):3601-3610.
  • [26]Milot E, Perrier C, Papillon L, Dodson JJ, Bernatchez L: Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding. Evol Appl 2013, 6(3):472-485.
  • [27]Hess MA, Rabe CD, Vogel JL, Stephenson JJ, Nelson DD, Narum SR: Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon. Mol Ecol 2012, 21(21):5236-5250.
  • [28]Carlson SM, Seamons TR: A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change. Evol Appl 2008, 1(2):222-238.
  • [29]Roff DA: Evolutionary Quantitative Genetics. New York, NY: Chapman & Hall; 1997.
  • [30]Wilson AJ, Pemberton JM, Pilkington JG, Coltman DW, Mifsud DV, Clutton-Brock TH, Kruuk LE: Environmental coupling of selection and heritability limits evolution. PLoS Biol 2006, 4(7):e216.
  • [31]Wilson AJ, Hutchings JA, Ferguson MM: Selective and genetic constraints on the evolution of body size in a stream-dwelling salmonid fish. J Evol Biol 2003, 16(4):584-594.
  • [32]Theriault V, Garant D, Bernatchez L, Dodson JJ: Heritability of life-history tactics and genetic correlation with body size in a natural population of brook charr (Salvelinus fontinalis). J Evol Biol 2007, 20(6):2266-2277.
  • [33]Serbezov D, Bernatchez L, Olsen EM, Vollestad LA: Quantitative genetic parameters for wild stream-living brown trout: heritability and parental effects. J Evol Biol 2010, 23:1631-1641.
  • [34]Jordan WC, Fleming IA, Garant D: Mating system and social structure. In The Genetics of Atlantic Salmon: Implications for Conservation. Edited by Verspoor E, Nielsen J, Stradmeyer L. Oxford: Blackwell; 2007.
  • [35]Christie MR, Marine ML, Blouin MS: Who are the missing parents? Grandparentage analysis identifies multiple sources of gene flow into a wild population. Mol Ecol 2011, 20(6):1263-1276.
  • [36]Johnston SE, Lindqvist M, Niemela E, Orell P, Erkinaro J, Kent MP, Lien S, Vaha JP, Vasemagi A, Primmer CR: Fish scales and SNP chips: SNP genotyping and allele frequency estimation in individual and pooled DNA from historical samples of Atlantic salmon (Salmo salar). BMC Genomics 2013, 14(1):439. BioMed Central Full Text
  • [37]Mills CPR, Piggins DJ: The release of Reared Salmon Smolts (Salmo-Salar) into the Burrishoole River System (Western Ireland) and their contribution to the rod and line fishery. Fish Manage 1983, 14(4):165-175.
  • [38]Piggins DJ, Mills CPR: Comparative aspects of the biology of naturally produced and hatchery-Reared Atlantic Salmon Smolts (Salmo-Salar L). Aquaculture 1985, 45:321-333.
  • [39]McGinnity P, Prodohl P, Ferguson A, Hynes R, Maoileidigh NO, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T: Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc Biol Sci 2003, 270(1532):2443-2450.
  • [40]Nielsen C, Holdensaard G, Petersen HC, Bjornsson BT, Madsen SS: Genetic differences in physiology, growth hormone levels and migratory behaviour of Atlantic salmon smolts. J Fish Biol 2001, 59(1):28-44.
  • [41]Poole WR, Nolan DT, Wevers T, Dillane M, Cotter D, Tully O: An ecophysiological comparison of wild and hatchery-raised Atlantic salmon (Salmo salar L.) smolts from the Burrishoole system, western Ireland. Aquaculture 2003, 222(1–4):301-314.
  • [42]McGinnity P, Prodohl P, Maoileidigh NO, Hynes R, Cotter D, Baker N, O’Hea B, Ferguson A: Differential lifetime success and performance of native and non-native Atlantic salmon examined under communal natural conditions. J Fish Biol 2004, 65:173-187.
  • [43]Byrne CJ, Poole R, Rogan G, Dillane M, Whelan KF: Temporal and environmental influences on the variation in Atlantic salmon smolt migration in the Burrishoole system 1970–2000. J Fish Biol 2003, 63:13.
  • [44]Metcalfe NB, Thorpe JE: Determinants of geographical variation in the age of Seaward Migrating Salmon, Salmo-Salar. J Anim Ecol 1990, 59(1):135-145.
  • [45]Thompson CE, Poole WR, Matthews MA, Ferguson A: Comparison, using minisatellite DNA profiling, of secondary male contribution in the fertilisation of wild and ranched Atlantic salmon (Salmo salar) ova. Can J Fish Aquat Sci 1998, 55(9):2011-2018.
  • [46]Vaha JP, Erkinaro J, Niemela E, Primmer CR: Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol 2007, 16(13):2638-2654.
  • [47]R-Core-Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2012. Vienna, Austria
  • [48]Paquette RS: Useful functions for (batch) file conversion and data resampling in microsatellite datasets. R package version 1.0. 2012. http://CRAN.R-project.org/package=PopGenKit webcite
  • [49]Jombart T: adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24(11):1403-1405.
  • [50]Kalinowski ST, Taper ML, Marshall TC: Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 2007, 16(5):1099-1106.
  • [51]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population-structure. Evolution 1984, 38(6):1358-1370.
  • [52]Jost LOU: GSTand its relatives do not measure differentiation. Mol Ecol 2008, 17(18):4015-4026.
  • [53]Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA: diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 2013, 4(8):782-788.
  • [54]Meirmans PG, Hedrick PW: Assessing population structure: F(ST) and related measures. Mol Ecol Resour 2011, 11(1):5-18.
  • [55]Whitlock MC: G’ST and D do not replace FST. Mol Ecol 2011, 20(6):1083-1091.
  • [56]Hadfield JD, Richardson DS, Burke T: Towards unbiased parentage assignment: combining genetic, behavioural and spatial data in a Bayesian framework. Mol Ecol 2006, 15(12):3715-3730.
  • [57]Koch M, Hadfield JD, Sefc KM, Sturmbauer C: Pedigree reconstruction in wild cichlid fish populations. Mol Ecol 2008, 17(20):4500-4511.
  • [58]Wang J: Sibship reconstruction from genetic data with typing errors. Genetics 2004, 166(4):1963-1979.
  • [59]Nielsen R, Mattila DK, Clapham PJ, Palsboll PJ: Statistical approaches to paternity analysis in natural populations and applications to the North Atlantic humpback whale. Genetics 2001, 157(4):1673-1682.
  • [60]Wang J: Computationally efficient sibship and parentage assignment from multilocus marker data. Genetics 2012, 191(1):183-194.
  • [61]Arnold SJ, Duvall D: Animal mating systems - a synthesis based on selection theory. Am Nat 1994, 143(2):317-348.
  • [62]Morrissey MB, Wilson AJ: pedantics: an r package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing. Mol Ecol Resour 2010, 10(4):711-719.
  • [63]Vazquez AI, Bates DM, Rosa GJ, Gianola D, Weigel KA: Technical note: an R package for fitting generalized linear mixed models in animal breeding. J Anim Sci 2010, 88(2):497-504.
  • [64]Aykanat T, Bryden CA, Heath DD: Sex-biased genetic component distribution among populations: additive genetic and maternal contributions to phenotypic differences among populations of Chinook salmon. J Evol Biol 2012, 25(4):682-690.
  • [65]Scheipl F, Greven S, Kuchenhoff H: Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Comput Stat Data Anal 2008, 52:3283-3299.
  • [66]Ford MJ, Williamson KS: The aunt and uncle effect revisited–the effect of biased parentage assignment on fitness estimation in a supplemented salmon population. J Hered 2010, 101(1):33-41.
  • [67]Harrison HB, Saenz-Agudelo P, Planes S, Jones GP, Berumen ML: Relative accuracy of three common methods of parentage analysis in natural populations. Mol Ecol 2013, 22(4):1158-1170.
  • [68]Araki H, Blouin MS: Unbiased estimation of relative reproductive success of different groups: evaluation and correction of bias caused by parentage assignment errors. Mol Ecol 2005, 14(13):4097-4109.
  • [69]Araki H, Berejikian BA, Ford MJ, Blouin MS: Fitness of hatchery-reared salmonids in the wild. Evol Appl 2008, 1(2):342-355.
  • [70]ICES: Report of the Working Group on North Atlantic Salmon (WGNAS), 3–12 April, 2013 In ICES CM 2013/ACOM:09, pp376. Copenhagen, Denmark; 2013.
  • [71]Morrissey MB: Exploiting natural history variation: looking to fishes for quantitative genetic models of natural populations. Ecol Freshw Fish 2011, 20(3):328-345.
  • [72]Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH, Pemberton JM, Slate J: Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 2013, 502(7469):93-95.
  • [73]Heath DD, Fox CW, Heath JW: Maternal effects on offspring size: variation through early development of chinook salmon. Evolution 1999, 53:1605-1611.
  文献评价指标  
  下载次数:126次 浏览次数:27次