| BMC Research Notes | |
| Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells | |
| Kamille Smidt1  Jørgen Rungby1  Astrid Knuhtsen1  Agnete Larsen1  Sanne Bjørn Nygaard1  | |
| [1] Department of Biomedicine, Centre of Pharmacology and Pharmacotherapy, Health, Aarhus University, Wilhelm Meyers Allé 4, Bld 1240, Aarhus, 8000, Denmark | |
| 关键词: Diabetes; β –cell; INS-1E cells; TPEN; Chelation; Metallothionein; Zinc transporter; Insulin; Zinc; | |
| Others : 1134499 DOI : 10.1186/1756-0500-7-84 |
|
| received in 2013-04-11, accepted in 2014-02-04, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells.
Results
Using INS-1E cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N’,N-tektrakis(2-pyridylmethyl)-ethylenediamine. The changes in intracellular insulin content following exposure to various concentrations of zinc were reflected by changes in the expression patterns of MT-1A, ZnT-8, ZnT-5, and ZnT-3. Furthermore, high zinc concentrations induced cell necrosis while zinc chelation induced apoptosis. Finally, cell proliferation was sensitive to changes in zinc the concentration.
Conclusion
These results indicate that the β-cell-like function and survival of INS-1E cells are dependent on the surrounding zinc concentrations. Our results suggest that regulation of zinc homeostasis could represent a pharmacological target.
【 授权许可】
2014 Nygaard et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150305235719527.pdf | 1426KB | ||
| Figure 10. | 35KB | Image | |
| Figure 9. | 46KB | Image | |
| Figure 8. | 42KB | Image | |
| Figure 7. | 36KB | Image | |
| Figure 6. | 38KB | Image | |
| Figure 5. | 63KB | Image | |
| Figure 4. | 34KB | Image | |
| Figure 3. | 93KB | Image | |
| Figure 2. | 80KB | Image | |
| Figure 1. | 39KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
【 参考文献 】
- [1]Vallee BL, Falchuk KH: The biochemical basis of zinc physiology. Physiol Rev 1993, 73(1):79-118.
- [2]Chang X, Jorgensen AM, Bardrum P, Led JJ: Solution structures of the R6 human insulin hexamer. Biochemistry 1997, 36(31):9409-9422.
- [3]Emdin SO, Dodson GG, Cutfield JM, Cutfield SM: Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia 1980, 19(3):174-182.
- [4]Hershfinkel M, Moran A, Grossman N, Sekler I: A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Natl Acad Sci U S A 2001, 98(20):11749-11754.
- [5]Prost AL, Bloc A, Hussy N, Derand R, Vivaudou M: Zinc is both an intracellular and extracellular regulator of KATP channel function. J Physiol 2004, 559(Pt 1):157-167.
- [6]Kinlaw WB, Levine AS, Morley JE, Silvis SE, McClain CJ: Abnormal zinc metabolism in type II diabetes mellitus. Am J Med 1983, 75(2):273-277.
- [7]Chausmer AB: Zinc, insulin and diabetes. J Am Coll Nutr 1998, 17(2):109-115.
- [8]Quarterman J, Mills C, Humphries W: The reduced secretion of sensitivity to insulin in zinc deficient rats. BBRC 1966, 25:354-358.
- [9]Kim BJ, Kim YH, Kim S, Kim JW, Koh JY, Oh SH, Lee MK, Kim KW, Lee MS: Zinc as a paracrine effector in pancreatic islet cell death. Diabetes 2000, 49(3):367-372.
- [10]Sondergaard LG, Stoltenberg M, Flyvbjerg A, Brock B, Schmitz O, Danscher G, Rungby J: Zinc ions in beta-cells of obese, insulin-resistant, and type 2 diabetic rats traced by autometallography. APMIS 2003, 111(12):1147-1154.
- [11]Smidt K, Jessen N, Petersen AB, Larsen A, Magnusson N, Jeppesen JB, Stoltenberg M, Culvenor JG, Tsatsanis A, Brock B, et al.: SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PloS One 2009, 4(5):e5684.
- [12]Quraishi I, Collins S, Pestaner JP, Harris T, Bagasra O: Role of zinc and zinc transporters in the molecular pathogenesis of diabetes mellitus. Med Hypotheses 2005, 65(5):887-892.
- [13]Cousins RJ, Liuzzi JP, Lichten LA: Mammalian zinc transport, trafficking, and signals. J Biol Chem 2006, 281(34):24085-24089.
- [14]Mocchegiani E, Giacconi R, Malavolta M: Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med 2008, 14(10):419-428.
- [15]Vasak M, Meloni G: Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 2011, 16(7):1067-1078.
- [16]Shen H, Qin H, Guo J: Cooperation of metallothionein and zinc transporters for regulating zinc homeostasis in human intestinal Caco-2 cells. Nutr Res (New York, NY) 2008, 28(6):406-413.
- [17]Overbeck S, Uciechowski P, Ackland ML, Ford D, Rink L: Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9. J Leukoc Biol 2008, 83(2):368-380.
- [18]Ohly P, Dohle C, Abel J, Seissler J, Gleichmann H: Zinc sulphate induces metallothionein in pancreatic islets of mice and protects against diabetes induced by multiple low doses of streptozotocin. Diabetologia 2000, 43(8):1020-1030.
- [19]Kindermann B, Doring F, Pfaffl M, Daniel H: Identification of genes responsive to intracellular zinc depletion in the human colon adenocarcinoma cell line HT-29. J Nutr 2004, 134(1):57-62.
- [20]Cao J, Bobo JA, Liuzzi JP, Cousins RJ: Effects of intracellular zinc depletion on metallothionein and ZIP2 transporter expression and apoptosis. J Leukoc Biol 2001, 70(4):559-566.
- [21]Petersen AB, Smidt K, Magnusson NE, Moore F, Egefjord L, Rungby J: siRNA-mediated knock-down of ZnT3 and ZnT8 affects production and secretion of insulin and apoptosis in INS-1E cells. APMIS 2011, 119(2):93-102.
- [22]Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A, et al.: In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 2006, 119(Pt 20):4199-4206.
- [23]Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB: Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 2010, 53(8):1656-1668.
- [24]Bellomo EA, Meur G, Rutter GA: Glucose regulates free cytosolic Zn(2) concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet beta-cells. J Biol Chem 2011, 286(29):25778-25789.
- [25]Devergnas S, Chimienti F, Naud N, Pennequin A, Coquerel Y, Chantegrel J, Favier A, Seve M: Differential regulation of zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study. Biochem Pharmacol 2004, 68(4):699-709.
- [26]Staiger H, Machicao F, Schafer SA, Kirchhoff K, Kantartzis K, Guthoff M, Silbernagel G, Stefan N, Haring HU, Fritsche A: Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine beta-cell function. PloS One 2008, 3(12):e3962.
- [27]Kirchhoff K, Machicao F, Haupt A, Schafer SA, Tschritter O, Staiger H, Stefan N, Haring HU, Fritsche A: Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 2008, 51(4):597-601.
- [28]Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, et al.: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445(7130):881-885.
- [29]Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science (New York, NY) 2007, 316(5829):1331-1336.
- [30]Chen H, Carlson EC, Pellet L, Moritz JT, Epstein PN: Overexpression of metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes 2001, 50(9):2040-2046.
- [31]Li X, Chen H, Epstein PN: Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species. J Biol Chem 2004, 279(1):765-771.
- [32]Cai L: Metallothionein as an adaptive protein prevents diabetes and its toxicity. Nonlinearity Biol Toxicol Med 2004, 2(2):89-103.
- [33]Yang L, Li H, Yu T, Zhao H, Cherian MG, Cai L, Liu Y: Polymorphisms in metallothionein-1 and -2 genes associated with the risk of type 2 diabetes mellitus and its complications. Am J Physiol Endocrinol Metab 2008, 294(5):E987-E992.
- [34]Giacconi R, Bonfigli AR, Testa R, Sirolla C, Cipriano C, Marra M, Muti E, Malavolta M, Costarelli L, Piacenza F, et al.: +647 A/C and +1245 MT1A polymorphisms in the susceptibility of diabetes mellitus and cardiovascular complications. Mol Genet Metab 2008, 94(1):98-104.
- [35]Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P: Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 2004, 145(2):667-678.
- [36]Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB: Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 1992, 130(1):167-178.
- [37]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):RESEARCH0034.
- [38]Smidt K, Wogensen L, Brock B, Schmitz O, Rungby J: Real-time PCR: housekeeping genes in the INS-1E beta-cell line. Horm Metab Res 2006, 38(1):8-11.
- [39]Sensi SL, Jeng JM: Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. Curr Mol Med 2004, 4(2):87-111.
- [40]Foster MC, Leapman RD, Li MX, Atwater I: Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys J 1993, 64(2):525-532.
- [41]Hutton JC, Penn EJ, Peshavaria M: Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 1983, 210(2):297-305.
- [42]Mathis D, Vence L, Benoist C: beta-Cell death during progression to diabetes. Nature 2001, 414(6865):792-798.
- [43]Sheline CT, Shi C, Takata T, Zhu J, Zhang W, Sheline PJ, Cai AL, Li L: Dietary zinc reduction, pyruvate supplementation, or zinc transporter 5 knockout attenuates beta-cell death in nonobese diabetic mice, islets, and insulinoma cells. J Nutr 2012, 142(12):2119-2127.
- [44]Priel T, Aricha-Tamir B, Sekler I: Clioquinol attenuates zinc-dependent beta-cell death and the onset of insulitis and hyperglycemia associated with experimental type I diabetes in mice. Eur J Pharmacol 2007, 565(1–3):232-239.
- [45]Krezel A, Maret W: Thionein/metallothionein control Zn(II) availability and the activity of enzymes. J Biol Inorg Chem 2008, 13(3):401-409.
- [46]Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W: The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 1994, 13(12):2870-2875.
- [47]Meloni G, Sonois V, Delaine T, Guilloreau L, Gillet A, Teissie J, Faller P, Vasak M: Metal swap between Zn7-metallothionein-3 and amyloid-beta-Cu protects against amyloid-beta toxicity. Nat Chem Biol 2008, 4(6):366-372.
- [48]Hozumi I, Suzuki JS, Kanazawa H, Hara A, Saio M, Inuzuka T, Miyairi S, Naganuma A, Tohyama C: Metallothionein-3 is expressed in the brain and various peripheral organs of the rat. Neurosci Lett 2008, 438(1):54-58.
- [49]Smidt K, Rungby J: ZnT3: a zinc transporter active in several organs. Biometals 2012, 25(1):1-8.
- [50]Palmiter RD, Cole TB, Quaife CJ, Findley SD: ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci U S A 1996, 93(25):14934-14939.
- [51]Leung KW, Liu M, Xu X, Seiler MJ, Barnstable CJ, Tombran-Tink J: Expression of ZnT and ZIP zinc transporters in the human RPE and their regulation by neurotrophic factors. Invest Ophthalmol Vis Sci 2008, 49(3):1221-1231.
- [52]Chimienti F, Devergnas S, Favier A, Seve M: Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 2004, 53(9):2330-2337.
- [53]Nigam PK: Serum zinc and copper levels and Cu: Zn ratio in psoriasis. Indian J Dermatol Venereol Leprol 2005, 71(3):205-206.
- [54]Lowe NM, Bremner I, Jackson MJ: Plasma 65Zn kinetics in the rat. Br J Nutr 1991, 65(3):445-455.
- [55]Richards-Williams C, Contreras JL, Berecek KH, Schwiebert EM: Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion. Purinergic Signal 2008, 4(4):393-405.
- [56]Lavoie N, Peralta MR, Chiasson M, Lafortune K, Pellegrini L, Seress L, Tóth K: Extracellular chelation of zinc does not affect hippocampal excitability and seizure-induced cell death in rats. J Physiol 2007, 578(1):275-289.
- [57]Shumaker DK, Vann LR, Goldberg MW, Allen TD, Wilson KL: TPEN, a Zn2+/Fe2+ chelator with low affinity for Ca2+, inhibits lamin assembly, destabilizes nuclear architecture and may independently protect nuclei from apoptosis in vitro. Cell Calcium 1998, 23(2–3):151-164.
- [58]Kay AR, Toth K: Is zinc a neuromodulator? Sci Signal 2008, 1(19):re3.
- [59]Albert B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular Biology of The Cell. 5th edition. 2008, 501-505. [Garland Science] 544-546
- [60]Huang L, Yan M, Kirschke CP: Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription. Exp Cell Res 2010, 316(16):2630-2643.
- [61]Chesters JK, Boyne R: Nature of the Zn2+ requirement for DNA synthesis by 3 T3 cells. Exp Cell Res 1991, 192(2):631-634.
- [62]MacDonald RS: The role of zinc in growth and cell proliferation. J Nutr 2000, 130(5S Suppl):1500S-1508S.
- [63]Jackson KA, Helston RM, McKay JA, O'Neill ED, Mathers JC, Ford D: Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localized and regulated by zinc through transcription and mRNA stability. J Biol Chem 2007, 282(14):10423-10431.
- [64]Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D: ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J Biol Chem 2007, 282(19):14389-14393.
- [65]Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M: Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem 2002, 277(21):19049-19055.
PDF