期刊论文详细信息
BMC Evolutionary Biology
Dating the diversification of the major lineages of Passeriformes (Aves)
Johan AA Nylander3  Jacqueline MT Nguyen2  Martin Irestedt1  Seraina Klopfstein1  Per GP Ericson4 
[1] Department of Biodiversity and Genetics, Swedish Museum of Natural History, Box 50007, SE–10405 Stockholm, Sweden;School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney NSW 2052, Australia;BILS – Bioinformatics Infrastructure for Life Sciences, University of Linköping, SE–58183 Linköping, Sweden;Department of Zoology, Swedish Museum of Natural History, Box 50007, SE–10405 Stockholm, Sweden
关键词: New Zealand–Antarctica vicariance;    Fossil calibrations;    Molecular dating;    Passeriformes;   
Others  :  858115
DOI  :  10.1186/1471-2148-14-8
 received in 2013-07-23, accepted in 2014-01-02,  发布年份 2014
PDF
【 摘 要 】

Background

The avian Order Passeriformes is an enormously species-rich group, which comprises almost 60% of all living bird species. This diverse order is believed to have originated before the break-up of Gondwana in the late Cretaceous. However, previous molecular dating studies have relied heavily on the geological split between New Zealand and Antarctica, assumed to have occurred 85–82 Mya, for calibrating the molecular clock and might thus be circular in their argument.

Results

This study provides a time-scale for the evolution of the major clades of passerines using seven nuclear markers, five taxonomically well-determined passerine fossils, and an updated interpretation of the New Zealand split from Antarctica 85–52 Mya in a Bayesian relaxed-clock approach. We also assess how different interpretations of the New Zealand–Antarctica vicariance event influence our age estimates. Our results suggest that the diversification of Passeriformes began in the late Cretaceous or early Cenozoic. Removing the root calibration for the New Zealand–Antarctica vicariance event (85–52 Mya) dramatically increases the 95% credibility intervals and leads to unrealistically old age estimates. We assess the individual characteristics of the seven nuclear genes analyzed in our study. Our analyses provide estimates of divergence times for the major groups of passerines, which can be used as secondary calibration points in future molecular studies.

Conclusions

Our analysis takes recent paleontological and geological findings into account and provides the best estimate of the passerine evolutionary time-scale currently available. This time-scale provides a temporal framework for further biogeographical, ecological, and co-evolutionary studies of the largest bird radiation, and adds to the growing support for a Cretaceous origin of Passeriformes.

【 授权许可】

   
2014 Ericson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723093337501.pdf 585KB PDF download
53KB Image download
45KB Image download
149KB Image download
154KB Image download
【 图 表 】

【 参考文献 】
  • [1]Barker FK, Barrowclough GF, Groth JG: A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proc R Soc Lond B 2002, 269:295-308.
  • [2]Ericson PGP, Christidis L, Cooper A, Irestedt M, Jackson J, Johansson US, Norman JA: A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proc R Soc Lond B 2002, 269:235-241.
  • [3]Sutherland R: Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data. Tectonophysics 1999, 308:341-362.
  • [4]Cooper RA, Millener PR: The New Zealand biota: historical background and new research. Trends Ecol Evol 1993, 8:429-433.
  • [5]Gaina C, Müller DR, Royer JY, Stock J, Hardebeck J, Symonds P: The tectonic history of the Tasman Sea: a puzzle with 13 pieces. J Geophys Res 1998, 103:12413-12433.
  • [6]Gaina C, Müller RD, Roest WR, Symonds P: The opening of the Tasman Sea: a gravity anomaly animation. Earth interact 1998, 2:1-23.
  • [7]Schellart WP, Lister GS, Toy VG: A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth-Sci Rev 2006, 76:191-233.
  • [8]Ladiges PY, Cantrill D: New Caledonia-Australian connection: biogeographic patterns and geology. Aust Syst Bot 2007, 20:383-389.
  • [9]Landis CA, Campbell HJ, Begg JG, Mildenhall DC, Paterson AM, Trewick SA: The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geol Mag 2008, 145:173-197.
  • [10]Waters JM, Craw D: Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Syst Biol 2006, 55:351-356.
  • [11]Bunce M, Worthy TH, Phillips MJ, Holdaway RN, Willerslev E, Haile J, Shapiro B, Scofield RP, Drummond A, Kamp PJJ, Cooper A: The evolutionary history of the extinct ratite moa and New Zealand Neogene paleogeography. Proc Natl Acad Sci 2009, 106:20646-20651.
  • [12]Worthy TH, Hand SJ, Nguyen JMT, Tennyson AJD, Worthy JP, Scofield RP, Boles WE, Archer M: Biogeographical and phylogenetic implications of an Early Miocene wren (Aves: Passeriformes: Acanthisittidae) from New Zealand. J Vert Paleontol 2010, 30:479-498.
  • [13]Barker FK, Cibois A, Schikler P, Feinstein J, Cracraft J: Phylogeny and diversification of the largest avian radiation. Proc Natl Acad Sci USA 2004, 101:11040-11045.
  • [14]Alström P, Ericson PGP, Olsson U, Sundberg P: Phylogeny and classification of the avian superfamily Sylvioidea. Mol Phylogenet Evol 2006, 38:381-397.
  • [15]Ericson PGP, Christidis L, Irestedt M, Norman JA: Systematic affinities of the lyrebirds (Passeriformes: Menura), with a novel classification of the major groups of passerine birds. Mol Phylogenet Evol 2002, 25:53-62.
  • [16]Ericson PGP, Olson SL, Irestedt M, Alvarenga H, Fjeldså J: Circumscription of a monophyletic family for the tapaculos (Aves: Rhinocryptidae): Psiloramphus in and Melanopareia out. J Ornithol 2010, 151:337-345.
  • [17]Ericson PGP, Johansson US: Phylogeny of Passerida (Aves: Passeriformes) based on nuclear and mitochondrial sequence data. Mol Phylogenet Evol 2003, 29:126-138.
  • [18]Fjeldså J, Zuccon D, Irestedt M, Johansson US, Ericson PGP: Sapayoa aenigma: a New World representative of 'Old World suboscines'. Proc R Soc Lond B (Suppl.) 2003, 270:S238-S241.
  • [19]Fjeldså J, Irestedt M, Ericson PGP, Zuccon D: The Cinnamon Ibon Hypocryptadius cinnamomeus is a forest canopy sparrow. Ibis 2010, 152:747-760.
  • [20]Fuchs J, Fjeldså J, Pasquet E: An ancient African radiation of corvoid birds (Aves: Passeriformes) detected by mitochondrial and nuclear sequence data. Zool Scr 2006, 35:375-385.
  • [21]Fuchs J, Irestedt M, Fjeldså J, Couloux A, Pasquet E, Bowie RC: Molecular phylogeny of African bush-shrikes and allies: tracing the biogeographic history of an explosive radiation of corvoid birds. Mol Phylogenet Evol 2012, 64:93-105.
  • [22]Gelang M, Cibois A, Pasquet E, Olsson U, Alstrom P, Ericson PGP: Phylogeny of babblers (Aves, Passeriformes): major lineages, family limits and classification. Zool Scr 2009, 38:225-236.
  • [23]Irestedt M, Johansson US, Parsons TJ, Ericson PGP: Phylogeny of major lineages of suboscines (Passeriformes) analysed by nuclear DNA sequence data. J Avian Biol 2001, 32:15-25.
  • [24]Irestedt M, Ohlson JI, Zuccon D, Källersjö M, Ericson PGP: Nuclear DNA from old collections of avian study skins reveals the evolutionary history of the Old World suboscines (Aves, Passeriformes). Zool Scr 2006, 35:567-580.
  • [25]Irestedt M, Fuchs J, Jønsson KA, Ohlson JI, Pasquet E, Ericson PGP: The systematic affinity of the enigmatic Lamprolia victoriae (Aves: Passeriformes) - an example of avian dispersal between New Guinea and Fiji over Miocene intermittent land bridges? Mol Phylogenet Evol 2008, 48:1218-1222.
  • [26]Irestedt M, Ohlson JI: The division of the major songbird radiation into Passerida and “core Corvoidea“ (Aves: Passeriformes) - the species tree versus gene trees. Zool Scr 2008, 37:305-313.
  • [27]Johansson US, Bowie RCK, Fjeldså J: Phylogenetic relationships within Passerida (Aves: Passeriformes): a review and a new molecular phylogeny based on three nuclear intron markers. Mol Phylogenet Evol 2008, 48:858-876.
  • [28]Jønsson KA, Fjeldså J, Ericson PGP, Irestedt M: Systematic placement of an enigmatic Southeast Asian taxon Eupetes macrocerus and implications for the biogeography of a main songbird radiation, the Passerida. Biol Lett 2007, 3:323-326.
  • [29]Ohlson JI, Fjeldså J, Ericson PGP: Tyrant flycatchers coming out in the open: phylogeny and ecological radiation of Tyrannidae (Aves: Passeriformes). Zool Scr 2008, 37:315-335.
  • [30]Zuccon D, Ericson PGP: Molecular and morphological evidences place the extinct New Zealand endemic Turnagra capensis in the Oriolidae. Mol Phylogenet Evol 2012, 62:414-426.
  • [31]Zuccon D, Prys-Jones R, Rasmussen PC, Ericson PGP: The phylogenetic relationships and generic limits of finches (Fringillidae). Mol Phylogenet Evol 2012, 62:581-596.
  • [32]Cooper A, Penny D: Mass survival of birds across the Cretaceous–Tertiary boundary: molecular evidence. Science 1997, 275:1109-1113.
  • [33]Irestedt M, Fjeldså J, Johansson US, Ericson PGP: Systematic relationships and biogeography of the tracheophone suboscines (Aves: Passeriformes). Mol Phylogenet Evol 2002, 23:499-512.
  • [34]Allen ES, Omland KE: Novel intron phylogeny (ODC) supports plumage convergence in orioles (Icterus). Auk 2003, 120:961-969.
  • [35]Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012, 61:539-542.
  • [36]Huelsenbeck JP, Larget B, Alfaro ME: Bayesian phylogenetic model selection using reversible-jump Markov chain Monte Carlo. Mol Biol Evol 2004, 21:1123-1133.
  • [37]Yang Z: Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 1996, 11:367-372.
  • [38]Rambaut A, Drummond AJ: Tracer v1.4. 2007. Available from http://beast.bio.ed.ac.uk/Tracer webcite
  • [39]Nylander JAA, Wilgenbus JC, Warren DL, Swofford DL: AWTY (Are We There Yet?): A system for graphical exploration of MCMC convergence in Bayesian phylogenetics . Bioinformatics 2008, 24:581-583.
  • [40]R Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. http://www.R-project.org/ webcite
  • [41]Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20:289-290.
  • [42]Schliep KP: PHANGORN: Phylogenetic analysis using R. Bioinformatics 2011, 27:592-593.
  • [43]Heibl C: PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software packages. 2008. Available from: http://www.christophheibl.de/Rpackages.html webcite
  • [44]Xie W, Lewis PO, Fan Y, Kuo L, Chen M-H: Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol 2011, 60:150-160.
  • [45]Thorne JL, Kishino H: Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 2002, 51:689-702.
  • [46]Lepage T, Bryant D, Philippe H, Lartillot N: A general comparison of relaxed molecular clock models. Mol Biol Evol 2007, 24:2669-2680.
  • [47]Kass RE, Raftery AE: Bayes Factors. J Am Statist Ass 1995, 90:773-795.
  • [48]Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP: A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol 2012, 61:973-999.
  • [49]McLoughlin S: The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Austral Syst Bot 2001, 49:271-300.
  • [50]Zachos J, Pagani M, Sloan L, Thomas E, Billups K: Trends, rhythms, and aberrations in global climate change 65 Ma to present. Science 2001, 292:686-693.
  • [51]Nguyen JMT, Worthy TH, Boles WE, Hand SJ, Archer M: A new cracticid (Passeriformes: Cracticidae) from the Early Miocene of Australia. Emu 2013, 113:374-382.
  • [52]Boles WE: A songbird (Aves: Passeriformes: Oriolidae) from the Miocene of Riversleigh, northwestern Queensland, Australia. Alcheringa 1999, 23:51-56.
  • [53]Manegold A: Earliest fossil record of the Certhioidea (treecreepers and allies) from the early Miocene of Germany. J Ornithol 2008, 149:223-228.
  • [54]Boles WE: Fossil honeyeaters (Meliphagidae) from the Tertiary of Riversleigh, northwestern Queensland. Emu 2005, 105:21-26.
  • [55]Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G: Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2006, 2:543-547.
  • [56]Heled J, Drummond AJ: Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst Biol 2012, 61:138-149.
  • [57]Huelsenbeck JP, Bollback JP, Levine AM: Inferring the root of a phylogenetic tree. Syst Biol 2002, 51:32-43.
  • [58]Jønsson KA, Fjeldså J: Determining biogeographic patterns of dispersal and diversification in oscine passerine birds in Australia, Southeast Asia and Africa. J Biogeogr 2006, 33:1155-1165.
  • [59]Irestedt M, Fjeldså J, Dalén L, Ericson PGP: Convergent evolution, habitat shifts and variable diversification rates in the ovenbird-woodcreeper family (Furnariidae). BMC Evol. Biol. 2009, 9:268. BioMed Central Full Text
  • [60]Moyle RG, Chesser RT, Brumfield RT, Tello JG, Marchese DJ, Cracraft J: Phylogeny and phylogenetic classification of the antbirds, ovenbirds, woodcreepers and allies (Aves: Passeriformes: infraorder Furnariides). Cladistics 2009, 25:386-405.
  • [61]Tello JG, Moyle RG, Marchese DJ, Cracraft J: Phylogeny and phylogenetic classification of the tyrant flycatchers, cotingas, manakins and their allies (Aves: Tyrannides). Cladistics 2009, 25:429-467.
  • [62]Ohlson JI, Irestedt M, Ericson PGP, Fjeldså J: Phylogeny and classification of the New World suboscines (Aves, Passeriformes). Zootaxa 2013, 3613:1-35.
  • [63]Ericson PGP, Johansson US, Parsons TJ: Major divisions of oscines revealed by insertions in the nuclear gene c-myc: a novel gene in avian phylogenetics. Auk 2000, 117:1077-1086.
  • [64]Ericson PGP, Zuccon D, Ohlson JI, Johansson US, Alvarenga H, Prum RO: Higher level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins and their allies (Aves: Tyrannida). Mol Phylogenet Evol 2006, 40:471-483.
  • [65]Jønsson KA, Irestedt M, Fuchs J, Ericson PGP, Christidis L, Bowie RCK, Norman JA, Pasquet E, Fjeldså J: Explosive avian radiations and multi-directional dispersal across Wallacea: Evidence from the Campephagidae and other Crown Corvida (Aves). Mol Phylogenet Evol 2008, 47:221-236.
  • [66]Spellman GA, Cibois A, Moyle RG, Winker K, Barker FK: Clarifying the systematics of an enigmatic avian lineage: What is a bombycillid? Mol Phylogenet Evol 2008, 49:691-1044.
  • [67]Graybeal A: Evaluating the phylogenetic utility of genes: a search for genes informative about deep divergences among vertebrates. Syst Biol 1994, 43:174-193.
  • [68]Yang Z: On the best evolutionary rate for phylogenetic analysis. Syst Biol 1998, 47:125-133.
  • [69]Collins TM, Fedrigo O, Naylor GJP: Choosing the best genes for the job: the case for stationary genes in genome-scale phylogenetics. Syst Biol 2005, 54:493-500.
  • [70]Townsend JP: Profiling phylogenetic informativeness. Syst Biol 2007, 56:222-231.
  • [71]Fischer M, Steel MA: Sequence length bounds for resolving a deep phylogenetic divergence. J Theoret Biol 2009, 256:247-252.
  • [72]Klopfstein S, Kropf C, Quicke DLJ: An evaluation of phylogenetic informativeness profiles and the molecular phylogeny of Diplazontinae (Hymenoptera, Ichneumonidae). Syst Biol 2010, 9:226-241.
  • [73]Susko E, Roger AJ: The probability of correctly resolving a split as an experimental design criterion in phylogenetics. Syst Biol 2012, 61:811-821.
  • [74]Goldman N: Phylogenetic information and experimental design in molecular systematics. Proc R Soc Lond B 1998, 265:1779-1786.
  • [75]Dos Reis M, Yang Z: The unbearable uncertainty of Bayesian divergence time estimation. J Syst Evol 2013, 51:30-43.
  • [76]Inoue J, Donoghue PCJ, Yang Z: The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Syst Biol 2010, 59:74-89.
  • [77]Warnock RCM, Yang Z, Donoghue PCJ: Exploring uncertainty in the calibration of the molecular clock. Biol Lett 2012, 8:156-159.
  • [78]Pyron RA: Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst Biol 2011, 60:466-481.
  • [79]Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue J, Irmis RB, Joyce WG, Ksepka DT, Patané JSL, Smith ND, Tarver JE, van Tuinen M, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor JM, Warnock RCM, Benton MJ: Best practices for justifying fossil calibrations. Syst Biol 2012, 61:346-359.
  • [80]Cracraft J, Barker FK: Passeriformes. In The Timetree of Life. Edited by Hedges SB, Kumar S. New York: Oxford University Press; 2009:423-431.
  • [81]Pereira SL, Baker AJ: A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 2006, 23:1731-1740.
  • [82]Harshman J: Passerida. Version 23 June 2008 (under construction). 2008. http://tolweb.org/Passerida/29223/2008.06.23 webcite in The Tree of Life Web Project, http://tolweb.org/ webcite
  • [83]Feduccia A: ‘Big bang’ for Tertiary birds? Trends Ecol Evol 2003, 18:172-176.
  • [84]Mayr G: Paleogene Fossil Birds. Heidelberg: Springer; 2009.
  • [85]Mayr G: The age of the crown group of passerine birds and its evolutionary significance – molecular calibrations versus the fossil record. Syst Biodiv 2013, 11:7-13.
  • [86]Cracraft J: Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event. Proc R Soc Lond B 2001, 268:459-469.
  • [87]Fleischer RC, McIntosh CE, Tarr CL: Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K–Ar based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol. Ecol. 1998, 7:533-545.
  • [88]Lerner HRL, Meyer M, James HF, Hofreiter M, Fleischer RC: Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr Biol 2011, 21:1838-1844.
  • [89]Boles WE: The world’s oldest songbird. Nature 1995, 374:21-22.
  • [90]Mayr G, Manegold A: The oldest European fossil songbird from the early Oligocene of Germany. Naturwissenschaften 2004, 91:173-177.
  • [91]Mayr G, Manegold A: New specimens of the earliest European passeriform bird. Acta Palaeont Polonica 2006, 51:315-323.
  • [92]Mayr G, Manegold A: A small suboscine-like passeriform bird from the early Oligocene of France. Condor 2006, 108:717-720.
  • [93]Bochenski ZM, Tomek T, Bujoczek M, Wertz K: A new passerine bird from the early Oligocene of Poland. J Ornithol 2011, 152:1045-1053.
  • [94]Bochenski ZM, Tomek T, Wertz K, Swidnicka E: The third nearly complete passerine bird from the early Oligocene of Europe. J Ornithol 2013, 154:923-931.
  • [95]Bochenski ZM, Tomek T, Swidnicka E: The first complete leg of a passerine bird from the early Oligocene of Poland. Acta Palaeontol Polonicain press
  文献评价指标  
  下载次数:20次 浏览次数:8次