期刊论文详细信息
BMC Genomics
Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments
Teresa Ann Coutinho1  Ian Toth2  Lucy Novungayo Moleleki1  Stephanus Nicolaas Venter1  Divine Yufetar Shyntum1 
[1] Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa;James Hutton Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
关键词: Phytopathogen;    Pantoea ananatis;    T6SS;    Type VI secretion system;   
Others  :  1217833
DOI  :  10.1186/1471-2164-15-163
 received in 2013-08-15, accepted in 2014-02-18,  发布年份 2014
PDF
【 摘 要 】

Background

The Type VI secretion system (T6SS) has been identified in several different bacteria, including the plant pathogenPantoea ananatis. Previous in silico analyses described three different T6SS loci present in the pathogenic strain of P. ananatis LMG 20103. This initial investigation has been extended to include an additional seven sequenced strains of P. ananatis together with 39 strains from different ecological niches. Comparative and phylogenetic analyses were used to investigate the distribution, evolution, intra-strain variability and operon structure of the T6SS in the sequenced strains.

Results

Three different T6SS loci were identified in P. ananatis strain LMG 20103 and designated PA T6SS 1-3. PA T6SS-1 was present in all sequenced strains of P. ananatis and in all 39 additional strains examined in this study. In addition, PA T6SS-1 included all 13 core T6SS genes required for synthesis of a functional T6SS. The plasmid-borne PA T6SS-2 also included all 13 core T6SS genes but was restricted to only 33% (15/46) of the strains examined. In addition, PA T6SS-2 was restricted to strains of P. ananatis isolated from symptomatic plant material. This finding raises the possibility of an association between PA T6SS-2 and either pathogenicity or host specificity. The third cluster PA T6SS-3 was present in all strains analyzed in this study but lacked 11 of the 13 core T6SS genes suggesting it may not encoded a functional T6SS. Inter-strain variability was also associated with hcp and vgrG islands, which are associated with the T6SS and encode a variable number of proteins usually of unknown function. These proteins may play a role in the fitness of different strains in a variety of ecological niches or as candidate T6SS effectors. Phylogenetic analysis indicated that PA T6SS-1 and PA T6SS-2 are evolutionarily distinct.

Conclusion

Our analysis indicates that the three T6SSs of P. ananatis appear to have been independently acquired and may play different roles relating to pathogenicity, host range determination and/or niche adaptation. Future work will be directed toward understanding the roles that these T6SSs play in the biology of P. ananatis.

【 授权许可】

   
2014 Shyntum et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708151249559.pdf 2022KB PDF download
Figure 6. 170KB Image download
Figure 5. 40KB Image download
Figure 4. 66KB Image download
Figure 3. 56KB Image download
Figure 2. 198KB Image download
Figure 1. 81KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Coutinho TA, Venter SN: Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol 2009, 10:325-335.
  • [2]Coutinho TA, Preisig O, Mergaert J, Cnockaert MC, Riedel KH, Swings J, Wingfield MJ: Bacterial blight and dieback of Eucalyptus species, hybrids and clones in South Africa. Plant Dis 2002, 86:20-25.
  • [3]Goszczynska T, Botha WJ, Venter SN, Coutinho TA: Isolation and identification of the causal agent of brown stalk rot, a new disease of maize in South Africa. Plant Dis 2007, 91:711-718.
  • [4]Goszczynska T, Moloto VM, Venter SN, Coutinho TA: Isolation and identification of Pantoea ananatis from onion seed in South Africa. Seed Sci Technol 2006, 34:655-668.
  • [5]Goszczynska T, Venter SN, Coutinho TA: PA 20, a semi-selective medium for isolation and enumeration of Pantoea ananatis. J Microbiol Methods 2006, 64:225-231.
  • [6]Serrano FB: Bacterial fruitlet brown-rot of pineapple in the Philippines. Phil J Sci 1928, 36:271-305.
  • [7]Cother EJ, Reinke R, Mckenzie C, Lanoiselet VM, Noble DH: An unusual stem necrosis of rice caused by Pantoea ananas and the first record of this pathogen on rice in Australia. Australas Plant Pathol 2004, 33:495-503.
  • [8]Wells JM, Sheng WS, Ceponis MJ, Chen TA: Isolation and characterization of strains of Erwinia ananas from honeydew melons. Phytopathol 1987, 77:511-514.
  • [9]Azad HR, Holmes GJ, Cooksey DA: A new leaf blotch disease of sudangrass caused by Pantoea ananas and Pantoea stewartii. Plant Dis 2000, 84:973-979.
  • [10]Cota LVD, Costa RV, Silva DD, Parreira DF, Lana UGP, Casela CR: First report of pathogenicity of Pantoea ananatis in sorghum (Sorghum bicolor) in Brazil. Australas Plant Dis Notes 2010, 5:120-122.
  • [11]Walcott RR, Gitaitis RD, Castro AC, Sanders FH, Diaz-Perez JC: Natural infestation of onion seed by Pantoea ananatis, causal agent of center rot. Plant Dis 2002, 86:106-111.
  • [12]Gitaitis RD, Walcott RR, Wells ML, Diaz Perez JC, Sanders FH: Transmission of Pantoea ananatis, causal agent of center rot of onion, by tobacco thrips, Frankliniella fusca. Plant Dis 2003, 87:675-678.
  • [13]Azegami K: Suppressive effect of bacteriophage on bacterial palea browning of rice caused by Pantoea ananatis. J Gen Plant Pathol 2013, 79:145-154.
  • [14]Paccola-Meirelles LD, Meirelles WF, Parentoni SN, Marriel IE, Ferreira AS, Casela CR: Reaction of maize inbred lines to a bacterium Panotea ananas, isolated from Phaeosphaeria leaf spot lesion. Crop Breed Appl Biotechnol 2002, 2:587-590.
  • [15]Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP: Secretion by numbers: protein traffic in prokaryotes. Mol Microbiol 2006, 62:308-319.
  • [16]Tseng TT, Tyler BM, Setubal JC: Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol 2009, 9(Suppl1):S2.
  • [17]Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ: Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 2006, 103:1528-1533.
  • [18]Filloux A, Hachani A, Bleves S: The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiol 2008, 154:1570-1583.
  • [19]Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ: Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 2009, 106:4154-4159.
  • [20]Pell LG, Kanelis V, Donaldson LW, Howell PL, Davidson AR: The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A 2009, 106:4160-4165.
  • [21]Shrivastava S, Mande SS: Identification and functional characterization of gene components of type VI secretion system in bacterial genomes. PLoS ONE 2008, 3:e2955.
  • [22]Das S, Chaudhuri K: Identification of a unique IAHP (IcmF Associated Homologous Proteins) cluster in Vibrio cholera and other Proteobacteria through in silico analysis. In Silico Biol 2003, 3:287-300.
  • [23]Bingle LEH, Bailey CE, Pallen MJ: Type VI secretion: a beginner’s guide. Curr Opin Microbiol 2008, 11:3-8.
  • [24]Boyer FG, Berthod FJ, Vandenbrouck Y, Attree I: Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 2009, 10:104. BioMed Central Full Text
  • [25]Bladergroen MR, Badelt K, Spaink HP: Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. MPMI 2003, 16:53-64.
  • [26]Aschtgen MS, Bernard CS, De Bentzmann S, Lloubès R, Cascales E: SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol 2008, 190:7523-7531.
  • [27]Weber B, Hasic M, Chen C, Wai SN, Milton DL: Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol 2009, 11:3018-3028.
  • [28]Zheng J, Leung KY: Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 2007, 66:1192-1206.
  • [29]Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoñez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ: A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 2006, 312:1526-1530.
  • [30]Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, Rohmer L, Tolker-Nielson T, Skerrett SJ, Mougous JD: Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 2010, 6:e1001068.
  • [31]Hood RD, Singh P, Hsu F, Guvener T, Carl MA, Trinidad RR, Silverman JM, Ohlson BB, Hick KG, Plemel RL, Li M, Schwarz S, Wang WY, Merz AJ, Goodlett DR, Mougous JD: A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010, 7:25-37.
  • [32]MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S: The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A 2010, 107:19520e-19524e.
  • [33]Miyata ST, Kitaoka M, Brooks TM, McAuley SB, Pukatzki S: Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun 2011, 79:2941-2949.
  • [34]Russell AB, Singh P, Brittnacher M, Bui NK, Hood RD, Carl MA, Agnello DM, Schwarz S, Goodlett DR, Vollmer W, Mougous JD: A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 2012, 11:538-549.
  • [35]Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ: Identification of T6SS dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A 2013, 110:2623-2628.
  • [36]Russell AB, LeRoux M, Hathazi K, Agnello DM, Ishikawa T, Wiggins PA, Wai SN, Mougous JD: Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 2013, 496:508-512.
  • [37]Whitney JC, Chou S, Russel AB, Biboy J, Gardiner TE, Ferrin MA, Brittnacher M, Vollmer W, Mougous JD: Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem 2013, 288:26616-26624.
  • [38]Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, Coulthurst SJ: The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 2011, 193:6057-6069.
  • [39]English G, Trunk K, Rao VA, Srikannathasan V, Hunter WN, Coulthurst SJ: New secreted toxin and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol 2012, 86:921-936.
  • [40]Fritsch MJ, Trunk K, AlcoforadoDiniz J, Guo M, Trost M, Coulthurst SJ: Proteomic identification of novel secreted anti-bacterial toxins of the Serratia marcescens type VI secretion system. Mol Cell Proteomics 2013, 12:2735-2749.
  • [41]Haapalainen M, Mosorin H, Dorati F, Wu R-F, Roine E, Taira S, Nissinen R, Laura Mattinen L, Jackson R, Pirhonen M, Lind N-C: Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts. J Bacteriol 2012, 194:4810-4822.
  • [42]Carruthers MD, Nicholson PA, Tracy EN, Munson RS Jr: Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS ONE 2013, 8:e59388.
  • [43]Salomon D, Gonzalez H, Updegraff BL, Orth K: Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS ONE 2013, 8:e61086.
  • [44]Gueguen E, Cascales E: Promoter swapping unveils the role of the Citrobacter rodentium CTS1 type VI secretion system in interbacterial competition. Appl Environ Microbiol 2013, 79:32-38.
  • [45]Blondel CJ, Jimenez JC, Contreras I, Santiviago CA: Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics 2009, 10:1-17. BioMed Central Full Text
  • [46]De Maayer P, Chan WY, Venter SN, Toth IK, Birch PRJ, Joubert F, Coutinho TA: Genome sequence of Pantoea ananatis LMG20103, the causative agent of Eucalyptus blight and dieback. J Bacteriol 2010, 192:2936-2937.
  • [47]Sarris PF, Trantas EA, Skandalis N, Tampakaki AP, Kapanidou M, Kokkinidis M, Panopoulos NJ: Phytobacterial type VI secretion system: Gene distribution, phylogeny, structure and biological functions. In “Plant Pathology Book”. 3rd edition. Edited by Cumagun CJ. InTech; 2010:53-84. doi:10.5772/33235 ISBN 978–953–51–0489–6
  • [48]De Maayer P, Venter SV, Kamber T, Duffy B, Coutinho TA, Smits TH: Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics 2011, 12:576. BioMed Central Full Text
  • [49]De Maayer P, Chan WY, Blom J, Venter SN, Duffy B, Smith THM, Coutinho TA: The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification. BMC Genomics 2012, 13:625. BioMed Central Full Text
  • [50]Shalom G, Shaw JG, Thomas MS: In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiol 2007, 153:2689-2699.
  • [51]Dandekar T, Snel B, Huynen M, Bork P: Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 1998, 23:324-328.
  • [52]Williams SG, Greenwood JA, Jones CW: Molecular analysis of the lac operon encoding the binding-protein-dependent lactose transport system and β-galactosidase in Agrobacterium radiobacter. Mol Microbiol 1992, 6:1755-1768.
  • [53]Hara Y, Kadotani N, Izui H, Katshkina JI, Kuvaeva TM, Andreeva IG, Golubeva LI, Malko DB, Makeev VJ, Mashko SV, Kozlov YI: The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential. Appl Microbiol Biotechnol 2012, 93:331-341.
  • [54]Kido K, Adachi R, Hasegawa M, Yano K, Hikichi Y, Takeuchi S, Atsuchi T, Takikawa Y: Internal fruite rot of netted melon caused by Pantoea ananatis (=Erwinia ananas) in Japan. J Gen Plant Pathol 2008, 74:302-312.
  • [55]Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ: Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 2007, 104:15508-15513.
  • [56]Suarez G, Sierra JC, Erova TE, Sha J, Horneman AJ, Chopra AK: A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 2010, 192:155-169.
  • [57]Davies G, Henrissat B: Structure and mechanisms of glycosyl hydrolases. Structure 1995, 3:853-859.
  • [58]Vocadlo DJ, Withers S: Detailed comparative analysis of the catalytic mechanisms of beta-N-acetylglucosaminidases from families 3 and 20 of glycoside hydrolases. Biogeosciences 2005, 44:12809-12818.
  • [59]Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG: PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 2013, 500:350-353.
  • [60]Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L: Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 2012, 7:18. BioMed Central Full Text
  • [61]Youderian P, Hartzell PL: Triple mutants uncover three new genes required for social motility in Myxococcus xanthus. Genetics 2007, 177:557-566.
  • [62]Kung VL, Khare S, Stehlik C, Bacon EM, Hughes AJ, Hauser AR: An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc Natl Acad Sci U S A 2012, 109:275-280.
  • [63]Stavrinides J, No A, Ochman H: A single genetic locus in the phytopathogen Pantoea stewartii enables gut colonization and pathogenicity in an insect host. Environ Microbiol 2010, 12:147-155.
  • [64]Hurst MR, Glare TR, Jackson TA, Ronson CW: Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J Bacteriol 2000, 182:127-138.
  • [65]Hurst MR, Jones SA, Binglin T, Harper LA, Jackson TA, Glare TR: The main virulence determinant of Yersinia entomophaga MH96 is a broad-host-range toxin complex active against insects. J Bacteriol 2011, 193:1966-1980.
  • [66]Waterfield N, Hares M, Yang G, Dowling A, Ffrench-Constant R: Potentiation and cellular phenotypes of the insecticidal toxin complexes of Photorhabdus bacteria. Cell Microbiol 2005, 7:373-382.
  • [67]McNulty C, Thompson J, Barrett B, Lord L, Andersen C, Roberts IS: The cell surface expression of group 2 capsular polysaccharides in Escherichia coli: the role of KpsD, RhsA and a multi-protein complex at the pole of the cell. Mol Microbiol 2006, 59:907-922.
  • [68]Roh E, Heu S, Moon E: Genus-specific distribution and pathovar-specific variation of the glycinerin R gene homologs in Xanthomonas genomes. J Microbiol 2008, 44:681-686.
  • [69]Sisto A, Cipriani MG, Morea M, Lonigro SL, Valerio F, Lavermicocca P: An Rhs like element is involved in bacteriocin production by Pseudomonas savastanoi pv. savastanoi. Antonie Van Leeuwenhoek 2010, 98:505-517.
  • [70]Poole SJ, Diner EJ, Aoki SK, Braaten BA, de Roodenbeke TC, Low DA, Hayes CS: Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet 2011, 7:e1002217.
  • [71]Koskiniemia S, Lamoureuxa JG, Nikolakakisb KC, de Roodenbekea C, Kaplana MD, Lowa DA, Hayesa CS: Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A 2013, 110:7032-7037.
  • [72]Hill CW: Large genomic sequence repetitions in bacteria: lessons from rRNA operons and Rhs elements. Res Microbiol 1999, 150:665-674.
  • [73]Jackson AP, Thomas GH, Parkhill J, Thomson N: Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement. BMC Genomics 2009, 10:584. BioMed Central Full Text
  • [74]Landsber MJ, Jones SA, Rothnagel R, Busby JN, Marshall SD, Simpson RM, Lott JS, Hankamer B, Hurst MR: 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc Natl Acad Sci U S A 2011, 108:20544-20529.
  • [75]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8:785-786.
  • [76]Kroght A, Larsson B, von Heijne G, Sonnhamer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305:567-580.
  • [77]Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FSL: PSORTb v. 2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005, 21:617-623.
  • [78]Fokine A, Miroshnikov KA, Shneider MM, Mesvanzhinov VV, Rossmann MG: Structure of the bacteriophage phi KZ lytic transglycosylase gp144. J Biol Chem 2008, 283:7242-7250.
  • [79]Patzer SI, Albrecht R, Braun V, Zeth K: Structural and mechanistic studies of pesticin, a bacterial homolog of phage lysozymes. J Biol Chem 2012, 287:23381-23396.
  • [80]Vollmer W, Pilsl H, Hantke K, Holtje J-V, Braun V: Pesticin displays muramidase activity. J Bacteriol 1997, 179:1580-1583.
  • [81]Scheurwater E, Reid CW, Clarke AJ: Lytic transglycosylases: bacterial space-making autolysin. Int J Biochem Cell Biol 2008, 40:586-591.
  • [82]Vollmer W, Joris B, Charlier P, Foster S: Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008, 32:259-286.
  • [83]Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, Mougous JD: Type VI secretion delivers bacteriolytic effectors to target cells. Nature 2011, 475:34-347.
  • [84]Davies JK, Reeves P: Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol 1975, 123:102-117.
  • [85]Pilsl H, Smajs D, Braun V: Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J Bacteriol 1999, 181:3578-3581.
  • [86]Hoell IA, Dalhus B, Heggset EB, Aspmo SI, Eijsink VGH: Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymes. FEBS J 2006, 273:4889-4900.
  • [87]Wang J, Gebre AK, Anderson RA, Parks JS: Cloning and in vitro expression of rat lecithin: cholesterol acyltransferase. Biochim Biophys Acta 1997, 1346:207-211.
  • [88]Barret M, Egan F, Fargier E, Morrissey JP, O’Gara F: Genomic analysis of the type VI secretion systems in Pseudomonas spp: novel clusters and putative effectors uncovered. Microbiology 2011, 157:1726-1740.
  • [89]Kawano M, Aravind L, Storz G: An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 2007, 64:738-754.
  • [90]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013, 30:2725-2729.
  • [91]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-2105.
  • [92]Le SQ, Gascuel O: An improved general amino acid replacement matrix. Mol Biol Evol 2008, 25:1307-1320.
  • [93]Mattinen L, Nissinen R, TeroRiipi T, Kalkkinen N, Pirhonen M: Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. Proteomics 2007, 7:3527-3537.
  • [94]Mattinen L, Somervuo P, Nykyri P, Nissinen R, Kouvonen P, Corthals G, Auvinen P, Aittamaa M, Valkonen JPT, Pirhonen M: Microarray profiling of host-extract induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. Microbiol 2008, 154:2387-2396.
  • [95]Liu H, Coulhurst SJ, Pritchard L, Hedley PE, Ravensdale M, Humphris S, Burr T, Takle G, Brurberg MB, Birch PR, Salmond GPC, Toth IK: Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog 2008, 4:e1000093.
  • [96]Records AR, Gross DC: Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol 2010, 192:3584-3596.
  • [97]Dimmic MW, Rest JS: Mindell DP: rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol 2002, 55:65-73.
  • [98]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [99]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [100]Zdobnov EM, Apweiler R: InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17:847-848.
  • [101]Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH: CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 2007, 35:D237-D240.
  • [102]Söding J, Biegert A, Lupas AN: The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005, 33:W244-W248.
  • [103]Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000, 28:33-36.
  文献评价指标  
  下载次数:68次 浏览次数:33次