期刊论文详细信息
BMC Genomics
Metagenomics reveals that detoxification systems are underrepresented in marine bacterial communities
Anders Blomberg1  Mikael Molin1  Magnus Alm Rosenblad1  Johan Bengtsson-Palme2 
[1]Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
[2]Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
关键词: Toxic metals;    Oxidative stress;    Metagenomics;    Marine;    Global ocean sampling;    Ecotoxicology;    Detoxification;   
Others  :  1141048
DOI  :  10.1186/1471-2164-15-749
 received in 2014-04-27, accepted in 2014-08-26,  发布年份 2014
PDF
【 摘 要 】

Background

Environmental shotgun sequencing (metagenomics) provides a new way to study communities in microbial ecology. We here use sequence data from the Global Ocean Sampling (GOS) expedition to investigate toxicant selection pressures revealed by the presence of detoxification genes in marine bacteria. To capture a broad range of potential toxicants we selected detoxification protein families representing systems protecting microorganisms from a variety of stressors, such as metals, organic compounds, antibiotics and oxygen radicals.

Results

Using a bioinformatics procedure based on comparative analysis to finished bacterial genomes we found that the amount of detoxification genes present in marine microorganisms seems surprisingly small. The underrepresentation is particularly evident for toxicant transporters and proteins involved in detoxifying metals. Exceptions are enzymes involved in oxidative stress defense where peroxidase enzymes are more abundant in marine bacteria compared to bacteria in general. In contrast, catalases are almost completely absent from the open ocean environment, suggesting that peroxidases and peroxiredoxins constitute a core line of defense against reactive oxygen species (ROS) in the marine milieu.

Conclusions

We found no indication that detoxification systems would be generally more abundant close to the coast compared to the open ocean. On the contrary, for several of the protein families that displayed a significant geographical distribution, like peroxidase, penicillin binding transpeptidase and divalent ion transport protein, the open ocean samples showed the highest abundance. Along the same lines, the abundance of most detoxification proteins did not increase with estimated pollution. The low level of detoxification systems in marine bacteria indicate that the majority of marine bacteria have a low capacity to adapt to increased pollution. Our study exemplifies the use of metagenomics data in ecotoxicology, and in particular how anthropogenic consequences on life in the sea can be examined.

【 授权许可】

   
2014 Bengtsson-Palme et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325194559539.pdf 3274KB PDF download
Figure 5. 87KB Image download
Figure 4. 74KB Image download
Figure 3. 101KB Image download
Figure 2. 190KB Image download
Figure 1. 124KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Stolz JF, Basu P, Santini JM, Oremland RS: Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 2006, 60:107-130.
  • [2]Frenzel M, Scarlett A, Rowland SJ, Galloway TS, Burton SK, Lappin-Scott HM, Booth AM: Complications with remediation strategies involving the biodegradation and detoxification of recalcitrant contaminant aromatic hydrocarbons. Sci Total Environ 2010, 408:4093-4101.
  • [3]Amann RI, Ludwig W, Schleifer KH: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995, 59:143-169.
  • [4]Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G: Structural and functional diversity of the microbial kinome. PLoS Biol 2007, 5:e17.
  • [5]Singh AH, Doerks T, Letunic I, Raes J, Bork P: Discovering functional novelty in metagenomes: examples from light-mediated processes. J Bacteriol 2009, 191:32-41.
  • [6]Bibby TS, Zhang Y, Chen M: Biogeography of photosynthetic light-harvesting genes in marine phytoplankton. PLoS ONE 2009, 4:e4601.
  • [7]Buttigieg PL, Hankeln W, Kostadinov I, Kottmann R, Yilmaz P, Duhaime MB, Glöckner FO: Ecogenomic perspectives on domains of unknown function: correlation-based exploration of marine metagenomes. PLoS ONE 2013, 8:e50869.
  • [8]Mackelprang R, Waldrop MP, Deangelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK: Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 2011.
  • [9]Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, Söderström H, Larsson DGJ: Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 2011, 6:e17038.
  • [10]Hemme CL, Deng Y, Gentry TJ, Fields MW, Wu L, Barua S, Barry KW, Tringe SG, Watson DB, He Z, Hazen TC, Tiedje JM, Rubin EM, Zhou J: Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J 2010, 4:660-672.
  • [11]Oh S, Tandukar M, Pavlostathis SG, Chain PSG, Konstantinidis KT: Microbial community adaptation to quaternary ammonium biocides as revealed by metagenomics. Environ Microbiol 2013, 15:2850-2864.
  • [12]Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M: Pfam: the protein families database. Nucleic Acids Res 2014, 42:D222-D230.
  • [13]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, De Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40(Database issue):D306-D312.
  • [14]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
  • [15]Eddy S: HMMER. [http://hmmer.janelia.org/ webcite]
  • [16]Johnson S: Remote Protein Homology Detection using Hidden Markov Models. Washington University, Program in Molecular Genetics; 2006. [PhD Thesis]
  • [17]Freyhult EK, Bollback JP, Gardner PP: Exploring genomic dark matter: a critical assessment of the performance of homology search methods on noncoding RNA. Genome Res 2007, 17:117-125.
  • [18]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A: The Pfam protein families database. Nucleic Acids Res 2010, 38(Database issue):D211-D222.
  • [19]Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, Van Belle C, Chandonia J-M, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, et al.: The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 2007, 5:e16.
  • [20]Atkinson HJ, Babbitt PC: An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations. PLoS Comput Biol 2009, 5:e1000541.
  • [21]Rodriguez-Brito B, Rohwer F, Edwards RA: An application of statistics to comparative metagenomics. BMC Bioinformatics 2006, 7:162. BioMed Central Full Text
  • [22]Kristiansson E, Hugenholtz P, Dalevi D: ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes. Bioinformatics 2009, 25:2737-2738.
  • [23]Li W: Analysis and comparison of very large metagenomes with fast clustering and functional annotation. BMC Bioinformatics 2009, 10:359. BioMed Central Full Text
  • [24]Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, Johnson J, Montgomery R, Ferriera S, Beeson KY, Williamson SJ, Tovchigrechko A, Allen AE, Zeigler LA, Sutton G, Eisenstadt E, Rogers Y-H, Friedman R, Frazier M, Venter JC: Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 2010, 468:60-66.
  • [25]Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ: Genome streamlining in a cosmopolitan oceanic bacterium. Science 2005, 309:1242-1245.
  • [26]Ivars-Martinez E, Martín-Cuadrado A-B, D'Auria G, Mira A, Ferriera S, Johnson J, Friedman R, Rodríguez-Valera F: Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J 2008, 2:1194-1212.
  • [27]Kamennaya NA, Post AF: Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp. Appl Environ Microbiol 2011, 77:291-301.
  • [28]Qin Q-L, Li Y, Zhang Y-J, Zhou Z-M, Zhang W-X, Chen X-L, Zhang X-Y, Zhou B-C, Wang L, Zhang Y-Z: Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913. ISME J 2011, 5:274-284.
  • [29]Singer E, Webb EA, Nelson WC, Heidelberg JF, Ivanova N, Pati A, Edwards KJ: Genomic potential of Marinobacter aquaeolei, a biogeochemical "opportunitroph". Appl Environ Microbiol 2011, 77:2763-2771.
  • [30]Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson KY, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers Y-H, Falcón LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, et al.: The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 2007, 5:e77.
  • [31]Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M: CAMERA: a community resource for metagenomics. PLoS Biol 2007, 5:e75.
  • [32]Delong EF: Microbial community genomics in the ocean. Nat Rev Microbiol 2005, 3:459-469.
  • [33]Patel PV, Gianoulis TA, Bjornson RD, Yip KY, Engelman DM, Gerstein MB: Analysis of membrane proteins in metagenomics: networks of correlated environmental features and protein families. Genome Res 2010, 20:960-971.
  • [34]Warringer J, Zörgö E, Cubillos FA, Zia A, Gjuvsland A, Simpson JT, Forsmark A, Durbin R, Omholt SW, Louis EJ, Liti G, Moses A, Blomberg A: Trait variation in yeast is defined by population history. PLoS Genet 2011, 7:e1002111.
  • [35]Gupta A, Whitton BA, Morby AP, Huckle JW, Robinson NJ: Amplification and rearrangement of a prokaryotic metallothionein locus smt in Synechococcus PCC 6301 selected for tolerance to cadmium. Proc Biol Sci 1992, 248:273-281.
  • [36]López-Pérez M, Gonzaga A, Martín-Cuadrado A-B, Onyshchenko O, Ghavidel A, Ghai R, Rodríguez-Valera F: Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep 2012, 2:696.
  • [37]Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO: Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304:66-74.
  • [38]Godzik A: Metagenomics and the protein universe. Curr Opin Struct Biol 2011, 21:398-403.
  • [39]Lesser MP: Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 2006, 68:253-278.
  • [40]Bernroitner M, Zamocky M, Furtmüller PG, Peschek GA, Obinger C: Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. J Exp Bot 2009, 60:423-440.
  • [41]Zamocky M, Gasselhuber B, Furtmüller PG, Obinger C: Molecular evolution of hydrogen peroxide degrading enzymes. Arch Biochem Biophys 2012, 525:131-144.
  • [42]Hackett JD, Wisecaver JH, Brosnahan ML, Kulis DM, Anderson DM, Bhattacharya D, Plumley FG, Erdner DL: Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol Biol Evol 2013, 30:70-78.
  • [43]Dittmann E, Fewer DP, Neilan BA: Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 2013, 37:23-43.
  • [44]Wiese M, D’Agostino PM, Mihali TK, Moffitt MC, Neilan BA: Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs 2010, 8:2185-2211.
  • [45]Hoiczyk E, Hansel A: Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 2000, 182:1191-1199.
  • [46]Urbach C, Fastrez J, Soumillion P: A new family of cyanobacterial penicillin-binding proteins. A missing link in the evolution of class A beta-lactamases. J Biol Chem 2008, 283:32516-32526.
  • [47]R Development Core Team: R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
  • [48]Dudoit S, Yang YH: Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In The Analysis of Gene Expression Data: Methods and Software. Edited by Parmingiani G, Garrett ES, Irizarry RA, Zeger SL. New York: Springer; 2002.
  • [49]Lucas A: Another Multidimensional Analysis Package. [http://CRAN.R-project.org/package=amap webcite]
  • [50]Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B: gplots: Various R programming tools for plotting data. [http://CRAN.R-project.org/package=gplots webcite]
  文献评价指标  
  下载次数:51次 浏览次数:60次