期刊论文详细信息
BMC Genomics
Transcriptome sequencing and annotation of the polychaete Hermodice carunculata (Annelida, Amphinomidae)
David F Gruber4  Vincent Pieribone2  John Sparks1  Rob DeSalle3  Aida Verdes4  Shaadi Mehr3 
[1] American Museum of Natural History, Department of Ichthyology, American Museum of Natural History, Division of Vertebrate Zoology, New York 10024, NY, USA;John B. Pierce Laboratory, Cellular and Molecular Physiology, Yale University, New Haven CT 06519, USA;American Museum of Natural History, Sackler Institute for Comparative Genomics, Central Park W at 79th St, New York 10024, NY, USA;Baruch College and The Graduate Center, Department of Natural Sciences, City University of New York, New York 10010, NY, USA
关键词: Functional annotation;    de novo assembly;    Molecular phylogenetics;    Polychaete;    Hermodice carunculata;    Next-generation sequencing;   
Others  :  1211964
DOI  :  10.1186/s12864-015-1565-6
PDF
【 摘 要 】

Background

The amphinomid polychaete Hermodice carunculata is a cosmopolitan and ecologically important omnivore in coral reef ecosystems, preying on a diverse suite of reef organisms and potentially acting as a vector for coral disease. While amphinomids are a key group for determining the root of the Annelida, their phylogenetic position has been difficult to resolve, and their publically available genomic data was scarce.

Results

We performed deep transcriptome sequencing (Illumina HiSeq) and profiling on Hermodice carunculata collected in the Western Atlantic Ocean. We focused this study on 58,454 predicted Open Reading Frames (ORFs) of genes longer than 200 amino acids for our homology search, and Gene Ontology (GO) terms and InterPro IDs were assigned to 32,500 of these ORFs. We used this de novo assembled transcriptome to recover major signaling pathways and housekeeping genes. We also identify a suite of H. carunculata genes related to reproduction and immune response.

Conclusions

We provide a comprehensive catalogue of annotated genes for Hermodice carunculata and expand the knowledge of reproduction and immune response genes in annelids, in general. Overall, this study vastly expands the available genomic data for H. carunculata, of which previously consisted of only 279 nucleotide sequences in NCBI. This underscores the utility of Illumina sequencing for de novo transcriptome assembly in non-model organisms as a cost-effective and efficient tool for gene discovery and downstream applications, such as phylogenetic analysis and gene expression profiling.

【 授权许可】

   
2015 Mehr et al.

【 预 览 】
附件列表
Files Size Format View
20150612022104216.pdf 2840KB PDF download
Figure 7. 147KB Image download
Figure 6. 43KB Image download
Figure 5. 242KB Image download
Figure 4. 46KB Image download
Figure 3. 114KB Image download
Figure 2. 18KB Image download
Figure 1. 32KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Ahrens JB, Borda E, Barroso R, Paiva PC, Campbell AM, Wolf A, Nugues MM, Rouse GW, Schulze A. The curious case of Hermodice carunculata (Annelida: Amphinomidae): evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins. Mol Ecol. 2013; 22:2280-91.
  • [2]Sebens KP. Intertidal distribution of zoanthids on the Caribbean coast of Panama: effects of predation and desiccation. Bull Mar Sci. 1982; 32:316-35.
  • [3]Karlson RH. Disturbance and monopolization of a spatial resource by Zoanthus sociatus (Coelenterata, Anthozoa). Bull Mar Sci. 1983; 33:118-31.
  • [4]Ott B, Lewis JB. The importance of the gastropod Coralliophila abbreviata (Lamarck) and the polychaete Hermodice carunculata (Pallas) as coral reef predators. Can J Zool. 1972; 50:1651-6.
  • [5]Rylaarsdam KW. Life histories and abundance patterns of colonial corals on Jamaican reefs. Mar Ecol Prog Ser Oldend. 1983; 13:249-60.
  • [6]Wolf AT, Nugues MM: Predation on coral settlers by the corallivorous fireworm Hermodice carunculata. Coral Reefs 2012. 32:227-31.
  • [7]Marsden JR. The digestive tract of Hermodice carunculata (Pallas). Polychaeta: Amphinomidae Can J Zool. 1963; 41:165-84.
  • [8]Lewis J, Crooks R. Foraging cycles of the amphinomid polychaete Hermodice caruncluata preying on the calcereous hydrozoan Millepora complenata. Bull Mar Sci. 1996; 58:853-6.
  • [9]Fauchald K, Jumars PA. The diet of worms: a study of polychaete feeding guilds. 1979.
  • [10]Sussman M, Loya Y, Fine M, Rosenberg E. The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environ Microbiol. 2003; 5:250-5.
  • [11]Wiklund H, Nygren A, Pleijel F, Sundberg P. The phylogenetic relationships between Amphinomidae, Archinomidae and Euphrosinidae (Amphinomida: Aciculata: Polychaeta), inferred from molecular data. J Mar Biol Assoc UK. 2008; 88:509-13.
  • [12]Rouse G, Pleijel F: Polychaetes. Oxford University Press; Oxford: 2001
  • [13]Borda E, Kudenov JD, Bienhold C, Rouse GW. Towards a revised Amphinomidae (Annelida, Amphinomida): description and affinities of a new genus and species from the Nile Deep-sea Fan, Mediterranean Sea. Zool Scr. 2012; 41:307-25.
  • [14]Rouse GW, Fauchald K. Cladistics and polychaetes. Zool Scr. 1997; 26:139-204.
  • [15]Yáñez-Rivera B, Salazar-Vallejo SI. Revision of Hermodice Kinberg, 1857 (Polychaeta: Amphinomidae). Sci Mar. 2011; 75:251-62.
  • [16]Weigert A, Helm C, Meyer M, Nickel B, Arendt D, Hausdorf B, Santos SR, Halanych KM, Purschke G, Bleidorn C, Struck TH. Illuminating the Base of the Annelid Tree Using Transcriptomics. Mol Biol Evol. 2014; 31:1391-401.
  • [17]Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G, Bleidorn C. Phylogenomic analyses unravel annelid evolution. Nature. 2011; 471:95-U113.
  • [18]Colgan DJ, Hutchings PA, Beacham E. Multi-gene analyses of the phylogenetic relationships among the Mollusca, Annelida, and Arthropoda. Zool Sci. 2008; 47:338-51.
  • [19]Giribet G. Assembling the lophotrochozoan (=spiralian) tree of life. Philos Trans R Soc L B Biol Sci. 2008; 363:1513-22.
  • [20]Salzet M, Tasiemski A, Cooper E. Innate immunity in lophotrochozoans: the annelids. Curr Pharm Des. 2006; 12:3043-50.
  • [21]Gagniere N, Jollivet D, Boutet I, Brelivet Y, Busso D, Da Silva C, Gaill F, Higuet D, Hourdez S, Knoops B, Lallier F, Leize-Wagner E, Mary J, Moras D, Perrodou E, Rees J-F, Segurens B, Shillito B, Tanguy A, Thierry J-C, Weissenbach J, Wincker P, Zal F, Poch O, Lecompte O. Insights into metazoan evolution from alvinella pompejana cDNAs. BMC Genomics. 2010; 11:634. BioMed Central Full Text
  • [22]Takahashi T, McDougall C, Troscianko J, Chen W-C, Jayaraman-Nagarajan A, Shimeld S, Ferrier D. An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals. BMC Evol Biol. 2009; 9:240. BioMed Central Full Text
  • [23]Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2009; 11:31-46.
  • [24]Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SH, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 2008; 452:745-9.
  • [25]Feng C, Chen M, Xu CJ, Bai L, Yin XR, Li X, Allan AC, Ferguson IB, Chen KS. Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics. 2012; 13:19. BioMed Central Full Text
  • [26]Sadamoto H, Takahashi H, Okada T, Kenmoku H, Toyota M, Asakawa Y. De novo sequencing and transcriptome analysis of the central nervous system of mollusc Lymnaea stagnalis by deep RNA sequencing. PLoS One. 2012; 7:e42546.
  • [27]Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics. 2011; 12:131. BioMed Central Full Text
  • [28]Crawford JE, Guelbeogo WM, Sanou A, Traore A, Vernick KD, Sagnon N, Lazzaro BP. De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-seq technology. PLoS One. 2010; 5:e14202.
  • [29]Franchini P, Van der Merwe M, Roodt-Wilding R. Transcriptome characterization of the South African abalone Haliotis midae using sequencing-by-synthesis. BMC Res Notes. 2011; 4:59. BioMed Central Full Text
  • [30]Salem M, Vallejo RL, Leeds TD, Palti Y, Liu S, Sabbagh A, CE R l, Yao J. RNA-Seq identifies SNP markers for growth traits in rainbow trout. PLoS One. 2012; 7:e36264.
  • [31]Renaut S, Nolte AW, Rogers SM, Derome N, Bernatchez L. SNP signatures of selection on standing genetic variation and their association with adaptive phenotypes along gradients of ecological speciation in lake whitefish species pairs (Coregonus spp.). Mol Ecol. 2011; 20:545-59.
  • [32]Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JFS, Jung H-JG, Vance CP, Gronwald JW. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics. 2011; 12:199. BioMed Central Full Text
  • [33]Canovas A, Rincon G, Islas-Trejo A, Wickramasinghe S, Medrano JF. SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mamm Genome. 2010; 21:592-8.
  • [34]Andrews S. A quality control tool for high throughput sequence data. 2010.
  • [35]Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics. 2012; 13:142. BioMed Central Full Text
  • [36]Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009; 19:1117-23.
  • [37]Kent WJ. BLAT–the BLAST-like alignment tool. Genome Res. 2002; 12:656-64.
  • [38]Surget-Groba Y, Montoya-Burgos JI. Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res. 2010; 20:1432-40.
  • [39]Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000; 16:276-7.
  • [40]Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389-402.
  • [41]Nagaraj SH, Gasser RB, Ranganathan S. A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform. 2007; 8:6-21.
  • [42]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT. Gene Ontology: tool for the unification of biology. Nat Genet. 2000; 25:25-9.
  • [43]Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS et al.. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004; 32(Database issue):D258-61.
  • [44]Zdobnov EM, Apweiler R. InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001; 17:847-8.
  • [45]Mulder NJ, Apweiler R: The InterPro database and tools for protein domain analysis. Curr Protoc Bioinforma 2008, Chapter 2:Unit 2 7.
  • [46]Hofmann K, Bucher P, Falquet L, Bairoch A. The PROSITE database, its status in 1999. Nucleic Acids Res. 1999; 27:215-9.
  • [47]Attwood TK, Croning MDR, Flower DR, Lewis AP, Mabey JE, Scordis P, Selley JN, Wright W. PRINTS-S: the database formerly known as PRINTS. Nucleic Acids Res. 2000; 28:225-7.
  • [48]Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL. The Pfam protein families database. Nucleic Acids Res. 2004; 32(suppl 1):D138–D141.
  • [49]Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 2004; 32(suppl 1):D142–D144.
  • [50]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21:3674-6.
  • [51]Conesa A, Götz S: Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008, 619832. doi:10.1155/2008/619832
  • [52]Riesgo A, Andrade SC, Sharma PP, Novo M, Perez-Porro AR, Vahtera V, Gonzalez VL, Kawauchi GY, Giribet G. Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Front Zool. 2012; 9:33. BioMed Central Full Text
  • [53]Mehr SF, DeSalle R, Kao H-T, Narechania A, Han Z, Tchernov D, Pieribone V, Gruber DF. Transcriptome deep-sequencing and clustering of expressed isoforms from Favia corals. BMC Genomics. 2013; 14:546. BioMed Central Full Text
  • [54]Borggrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci. 2009; 66:1631-46.
  • [55]Thamm K, Seaver EC. Notch signaling during larval and juvenile development in the polychaete annelid Capitella sp. I Dev Biol. 2008; 320:304-18.
  • [56]Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends Genet. 2013; 29:569-74.
  • [57]Cooper EL. Comparative immunology. Integr Comp Biol. 2003; 43:278-80.
  • [58]Nyholm SV, Graf J. Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses. Nat Rev Microbiol. 2012; 10:815-27.
  • [59]Kudenov JD: The reproductive biology of Eurythoe complanata (Pallas, 1766), (Polychaeta: Amphinomidae). University of Arizona; Tuscon: 1974
  • [60]Novo M, Riesgo A, Fernández-Guerra A, Giribet G. Pheromone evolution, reproductive genes, and comparative transcriptomics in Mediterranean earthworms (Annelida, Oligochaeta, Hormogastridae). Mol Biol Evol. 2013; 30:1614-29.
  • [61]Watson GJ, Langford FM, Gaudron SM, Bentley MG. Factors influencing spawning and pairing in the scale worm Harmothoe imbricata (Annelida: Polychaeta). Biol Bull. 2000; 199:50-8.
  • [62]Zeeck E, Hardege J, Bartels-Hardege H. Pla tyn ereis d urn erilii. Mar Ecol Prog Ser. 1990; 67:183-8.
  • [63]Costello MJ, Bouchet P, Boxshall G, Fauchald K, Gordon D, Hoeksema BW, Poore GC, van Soest RW, Stohr S, Walter TC, Vanhoorne B, Decock W, Appeltans W. Global Coordination and Standardisation in Marine Biodiversity through the World Register of Marine Species (WoRMS) and Related Databases. PLoS One. 2013; 8:e51629.
  • [64]Barroso R, Paiva PC. Amphinomidae (Annelida: Polychaeta) from Rocas Atoll, Northeastern Brazil. Arq Mus Nac. 2007; 65:357-62.
  • [65]Borda E, Kudenov JD, Chevaldonne P, Blake JA, Desbruyeres D, Fabri MC, Hourdez S, Pleijel F, Shank TM, Wilson NG, Schulze A, Rouse GW. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps. Proceedings of the Royal Society of London B. 2013; 280:20131876.
  • [66]Shimomura O: Bioluminescence: Chemical Principles and Methods. World Scientific Publishing Company; 2012.
  • [67]Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000; 17:540-52.
  • [68]Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010; 27:221-4.
  • [69]Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22:2688-90.
  文献评价指标  
  下载次数:8次 浏览次数:6次