期刊论文详细信息
BMC Genomics
Comparative genomics of Riemerella anatipestifer reveals genetic diversity
Xiaoyue Chen3  Anchun Cheng3  KunFeng Sun3  Shun Chen3  RenYong Jia3  MingShu Wang3  Sanjun Yin2  MaFeng Liu3  LinFeng Yang2  Dekang Zhu3  Wenbin Liu2  Xiaojia Wang1 
[1] Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China;BGI-Shenzhen, Shenzhen 518083, China;Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
关键词: Structural variation;    Comparative genomics;    Riemerella anatipestifer;   
Others  :  1089782
DOI  :  10.1186/1471-2164-15-479
 received in 2013-10-31, accepted in 2014-06-10,  发布年份 2014
PDF
【 摘 要 】

Background

Riemerella anatipestifer is one of the most important pathogens of ducks. However, the molecular mechanisms of R. anatipestifer infection are poorly understood. In particular, the lack of genomic information from a variety of R. anatipestifer strains has proved severely limiting.

Results

In this study, we present the complete genomes of two R. anatipestifer strains, RA-CH-1 (2,309,519 bp, Genbank accession CP003787) and RA-CH-2 (2,166,321 bp, Genbank accession CP004020). Both strains are from isolates taken from two different sick ducks in the SiChuang province of China. A comparative genomics approach was used to identify similarities and key differences between RA-CH-1 and RA-CH-2 and the previously sequenced strain RA-GD, a clinical isolate from GuangDong, China, and ATCC11845.

Conclusion

The genomes of RA-CH-2 and RA-GD were extremely similar, while RA-CH-1 was significantly different than ATCC11845. RA-CH-1 is 140,000 bp larger than the three other strains and has 16 unique gene families. Evolutionary analysis shows that RA-CH-1 and RA-CH-2 are closed and in a branch with ATCC11845, while RA-GD is located in another branch. Additionally, the detection of several iron/heme-transport related proteins and motility mechanisms will be useful in elucidating factors important in pathogenicity. This information will allow a better understanding of the phenotype of different R. anatipestifer strains and molecular mechanisms of infection.

【 授权许可】

   
2014 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128151746607.pdf 3550KB PDF download
Figure 8. 27KB Image download
Figure 7. 50KB Image download
Figure 6. 94KB Image download
Figure 5. 84KB Image download
Figure 4. 90KB Image download
Figure 3. 161KB Image download
Figure 2. 87KB Image download
Figure 1. 92KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Segers P, Mannheim W, Vancanneyt M, De Brandt K, Hinz KH, Kersters K, Vandamme P: Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. Int J Syst Bacteriol 1993, 43(4):768-776.
  • [2]Hess C, Enichlmayr H, Jandreski-Cvetkovic D, Liebhart D, Bilic I, Hess M: Riemerella anatipestifer outbreaks in commercial goose flocks and identification of isolates by MALDI-TOF mass spectrometry. Avian Pathol 2013, 42(2):151-156.
  • [3]Mavromatis K, Lu M, Misra M, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani L, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Jefffries CD, Detter JC, Brambilla EM, Rohde M, Goker M, Gronow S, Woyke T, Bristow J, et al.: Complete genome sequence of Riemerella anatipestifer type strain (ATCC 11845). Stand Genomic Sci 2011, 4(2):144-153.
  • [4]Sarver CF, Morishita TY, Nersessian B: The effect of route of inoculation and challenge dosage on Riemerella anatipestifer infection in Pekin ducks (Anas platyrhynchos). Avian Dis 2005, 49(1):104-107.
  • [5]Pathanasophon P, Phuektes P, Tanticharoenyos T, Narongsak W, Sawada T: A potential new serotype of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol 2002, 31(3):267-270.
  • [6]Christensen H, Bisgaard M: Phylogenetic relationships of Riemerella anatipestifer serovars and related taxa and an evaluation of specific PCR tests reported for R. anatipestifer. J Appl Microbiol 2010, 108(5):1612-1619.
  • [7]Tsai HJ, Liu YT, Tseng CS, Pan MJ: Genetic variation of the ompA and 16S rRNA genes of Riemerella anatipestifer. Avian Pathol 2005, 34(1):55-64.
  • [8]Huang B, Subramaniam S, Chua KL, Kwang J, Loh H, Frey J, Tan HM: Molecular fingerprinting of Riemerella anatipestifer by repetitive sequence PCR. Vet Microbiol 1999, 67(3):213-219.
  • [9]Hu Q, Tu J, Han X, Zhu Y, Ding C, Yu S: Development of multiplex PCR assay for rapid detection of Riemerella anatipestifer, Escherichia coli, and Salmonella enterica simultaneously from ducks. J Microbiol Methods 2011, 87(1):64-69.
  • [10]Rubbenstroth D, Ryll M, Hotzel H, Christensen H, Knobloch JK, Rautenschlein S, Bisgaard M: Description of Riemerella columbipharyngis sp. nov., isolated from the pharynx of healthy domestic pigeons (Columba livia f. domestica), and emended descriptions of the genus Riemerella, Riemerella anatipestifer and Riemerella columbina. Int J Syst Evol Microbiol 2013, 63(Pt 1):280-287.
  • [11]Yu CY, Liu YW, Chou SJ, Chao MR, Weng BC, Tsay JG, Chiu CH, Ching Wu C, Long Lin T, Chang CC, Chu C: Genomic diversity and molecular differentiation of Riemerella anatipestifer associated with eight outbreaks in five farms. Avian Pathol 2008, 37(3):273-279.
  • [12]Subramaniam S, Chua KL, Tan HM, Loh H, Kuhnert P, Frey J: Phylogenetic position of Riemerella anatipestifer based on 16S rRNA gene sequences. Int J Syst Bacteriol 1997, 47(2):562-565.
  • [13]Zhai Z, Li X, Xiao X, Yu J, Chen M, Yu Y, Wu G, Li Y, Ye L, Yao H, Lu C, Zhang W: Immunoproteomics selection of cross-protective vaccine candidates from Riemerella anatipestifer serotypes 1 and 2. Vet Microbiol 2013, 162(2–4):850-857.
  • [14]Subramaniam S, Huang B, Loh H, Kwang J, Tan HM, Chua KL, Frey J: Characterization of a predominant immunogenic outer membrane protein of Riemerella anatipestifer. Clin Diagn Lab Immunol 2000, 7(2):168-174.
  • [15]Hu Q, Han X, Zhou X, Ding C, Zhu Y, Yu S: OmpA is a virulence factor of Riemerella anatipestifer. Vet Microbiol 2011, 150(3–4):278-283.
  • [16]Weng S, Lin W, Chang Y, Chang C: Identification of a virulence-associated protein homolog gene and ISRa1 in a plasmid of Riemerella anatipestifer. FEMS Microbiol Lett 1999, 179(1):11-19.
  • [17]Crasta KC, Chua KL, Subramaniam S, Frey J, Loh H, Tan HM: Identification and characterization of CAMP cohemolysin as a potential virulence factor of Riemerella anatipestifer. J Bacteriol 2002, 184(7):1932-1939.
  • [18]Wang X, Zhu D, Wang M, Cheng A, Jia R, Zhou Y, Chen Z, Luo Q, Liu F, Wang Y, Chen X: Complete genome sequence of Riemerella anatipestifer reference strain. J Bacteriol 2012, 194(12):3270-3271.
  • [19]Tu J, Lu F, Miao S, Ni X, Jiang P, Yu H, Xing L, Yu S, Ding C, Hu Q: The siderophore-interacting protein is involved in iron acquisition and virulence of Riemerella anatipestifer strain CH3. Vet Microbiol 2014, 168(2–4):395-402.
  • [20]Lu F, Miao S, Tu J, Ni X, Xing L, Yu H, Pan L, Hu Q: The role of TonB-dependent receptor TbdR1 in Riemerella anatipestifer in iron acquisition and virulence. Vet Microbiol 2013, 167(3–4):713-718.
  • [21]McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL: Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 2009, 75(21):6864-6875.
  • [22]Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ: Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 2007, 73(11):3536-3546.
  • [23]McBride MJ, Zhu Y: Gliding motility and Por secretion system genes are widespread among members of the phylum bacteroidetes. J Bacteriol 2013, 195(2):270-278.
  • [24]Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Rhodes RG, Nakayama K: A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci U S A 2010, 107(1):276-281.
  • [25]Saiki K, Konishi K: Identification of a Porphyromonas gingivalis novel protein sov required for the secretion of gingipains. Microbiol Immunol 2007, 51(5):483-491.
  • [26]Braun TF, Khubbar MK, Saffarini DA, McBride MJ: Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J Bacteriol 2005, 187(20):6943-6952.
  • [27]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41.
  • [28]Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004, 32(Database issue):D277-D280.
  • [29]Karp PD, Paley S, Romero P: The pathway tools software. Bioinformatics 2002, 18(Suppl 1):S225-S232.
  • [30]Zhou X, Su Z: EasyGO: gene ontology-based annotation and functional enrichment analysis tool for agronomical species. BMC Genomics 2007, 8:246.
  • [31]Demuth JP, De Bie T, Stajich JE, Cristianini N, Hahn MW: The evolution of mammalian gene families. PloS One 2006, 1:e85.
  • [32]Skinner MK, Rawls A, Wilson-Rawls J, Roalson EH: Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature. Differentiation 2010, 80(1):1-8.
  • [33]Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment program. Bioinformatics 2008, 24(5):713-714.
  • [34]Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27(2):573-580.
  • [35]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110(1–4):462-467.
  • [36]Delcher AL, Harmon D, Kasif S, White O, Salzberg SL: Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999, 27(23):4636-4641.
  • [37]Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006, 34(Database issue):D354-D357.
  • [38]Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science 1997, 278(5338):631-637.
  • [39]Magrane M, Consortium U: UniProt knowledgebase: a hub of integrated protein data. Database (Oxford) 2011, 2011:bar009.
  • [40]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology: the gene ontology consortium. Nat Genet 2000, 25(1):25-29.
  • [41]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12.
  • [42]Dewey CNPL: Evolution at the nucleotide level: the problem of multiple whole-genome alignment. Hum Mol Genet 2006, 15(1):R51-R56.
  • [43]Li Y, Zheng H, Luo R, Wu H, Zhu H, Li R, Cao H, Wu B, Huang S, Shao H, Ma H, Zhang F, Feng S, Zhang W, Du H, Tian G, Li J, Zhang X, Li S, Bolund L, Kristiansen K, de Smith AJ, Blakemore AI, Coin LJ, Yang H, Wang J, Wang J: Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nat Biotechnol 2011, 29(8):723-730.
  • [44]Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J: SNP detection for massively parallel whole-genome resequencing. Genome Res 2009, 19(6):1124-1132.
  • [45]Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13(9):2178-2189.
  • [46]Nandi T, Ong C, Singh AP, Boddey J, Atkins T, Sarkar-Tyson M, Essex-Lopresti AE, Chua HH, Pearson T, Kreisberg JF, Nilsson C, Ariyaratne P, Ronning C, Losada L, Ruan Y, Sung WK, Woods D, Titball RW, Beacham I, Peak I, Keim P, Nierman WC, Tan P: A genomic survey of positive selection in Burkholderia pseudomallei provides insights into the evolution of accidental virulence. PLoS Pathogens 2010, 6(4):e1000845.
  文献评价指标  
  下载次数:0次 浏览次数:6次