BMC Microbiology | |
Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment | |
Alexandre S Rosado3  Regina MCP Domingues2  Raquel S Peixoto3  Casey RJ Hubert1  Michael J Maguire1  Geraldo R Paula2  Lívia Q Ferreira2  Edir M Ferreira3  Deborah CA Leite3  Luiza L Andrade1  | |
[1] School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK;Laboratório de Biologia de Anaeróbios, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil;Laboratório de Ecologia Molecular Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil | |
关键词: Hydrocarbons; Petroleum; Sulphate; Anoxic sediment; Bacterial diversity; Mangrove; | |
Others : 1221778 DOI : 10.1186/1471-2180-12-186 |
|
received in 2012-01-29, accepted in 2012-08-23, 发布年份 2012 | |
【 摘 要 】
Background
Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood.
Results
Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth.
Conclusions
Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm) being greater than in both deeper sediment layers (15–20 and 35–40 cm), which were similar to each other.
【 授权许可】
2012 Andrade et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150803171849723.pdf | 1315KB | download | |
Figure 5. | 39KB | Image | download |
Figure 4. | 24KB | Image | download |
Figure 3. | 47KB | Image | download |
Figure 2. | 48KB | Image | download |
Figure 1. | 74KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Merhi ZO: Gulf Coast oil disaster: impact on human reproduction. Fertil Steril 2010, 94:1575-1577.
- [2]Mitsch WJ: The 2010 oil spill in the Gulf of Mexico: What would Mother Nature do? Ecological Engineering 2010, 36:1607-1610.
- [3]Head IM, Jones DM, Röling WFM: Marine microorganisms make a meal of oil. Nat Rev Microbiol 2006, 4:173-182.
- [4]Olguín EJ, Hernández ME, Sánchez-Galván G: Contaminación de manglares por hidrocarburos y estratégias de biorremediación, fitorremediación y restauración. Ver Int Contam Ambient 2007, 23:139-154.
- [5]Dias ACF, Andreote FD, Rigonato J, Fiore MF, Melo IS, Araújo WL: The bacterial diversity in a Brazilian non-disturbed mangrove sediment. Antonie van Leeuwenhoeck 2010, 98:541-551.
- [6]Lyimo TJ, Pol A, Harhangi HR, Jetten MSM, den Camp HJMO: Anaerobic oxidation of dimethylsul¢de andmethanethiol in mangrove sediments is dominated by sulfate-reducing bacteria. FEMS Microbiol Ecol 2009, 70:483-492.
- [7]Taketani RG, Franco NO, Rosado AS, van Elsas JD: Microbial community response to a simulated hydrocarbon spill in mangrove sediments. J Microbiol 2010, 48:7-15.
- [8]Li C-H, Zhou H-W, Wong Y-S, Tam NF-Y: Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China. Sci Total Environ 2009, 407:5772-5779.
- [9]Burns KA, Codi S: Contrasting impacts of localised versus catastrophic oil spills in mangrove sediments. Mangroves and Salt Marshes 1998, 2:63-74.
- [10]Ke L, Yu KSH, Wong YS, Tam NFY: Spatial and vertical distribution of polycyclic aromatic hydrocarbons in mangrove sediments. Sci Total Environ 2005, 340:177-187.
- [11]Widdel F, Knittel K, Galushko A: Anaerobic hydrocarbon-degrading microorganisms: an overview. In Handbook of hydrocarbon and lipid microbiology. Edited by Timmis KN. Germany: Springer-Verlag Berlin Heidelberg; 2010:1997-2022.
- [12]Boopathy R: Anaerobic degradation of No. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions. Biores Technol 2003, 86:171-175.
- [13]Boopathy R: Anaerobic biodegradation of no. 2 diesel fuel in soil: a soil comumn study. Biores Technol 2004, 94:143-151.
- [14]Boopathy R, Shields S, Nunna S: Biodegradation of crude oil from the BP oil spill in the marsh sediments of Southeast Louisiana, USA. Appl Biochem Biotechnol 2012.
- [15]Rabus R, Jarling R, Lahme S, Kühner S, Heider J, Widdel F, Wilkes H: Co-metabolic conversion of toluene in anaerobic n-alkane degrading bacteria. Environ Microbiol 2011, 13:2576-2586.
- [16]Grossi V, Cravo-Laureau C, Guyoneaud R, Ranchou-Peyruse A, Hirschler-Réa A: Metabolism of n-alkanes by anaerobic bacteria: a summary. Org Geochem 2008, 39:1197-1203.
- [17]Callaghan AV, Warwik B, Chadain SMN, Young LY, Zylstra GJ: Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Bioph Res Commun 2008, 366:142-148.
- [18]Callaghan AV, Davidova IA, Savage-Ashlock K, Parisi VA, Gieg LM, Suflita JM, Kukor JJ, Wawrik B: Diversity of benyzl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 2010, 44:7287-7294.
- [19]Heider J, Fuchs G: Anaerobic metabolism of aromatic compounds. Eur J Biochem 1997, 243:577-596.
- [20]Küntze K, Shinoda Y, Moutakki H, McInerney MJ, Vogt C, Richnow H, Boll M: 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 2008, 10:1547-1556.
- [21]Beller HR, Kane SR, Legler TC, Alvarez PJJ: A real-time polymerase chain reaction method for monitoring anaerobic hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 2002, 32:3977-3984.
- [22]Winderl C, Schaefer S, Lueders T: Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 2007, 9:1035-1046.
- [23]Kondo J, Nedwell DB, Purdy KJ, Silva SQ: Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol J 2004, 21:145-157.
- [24]Macdonald BCT, Smith J, Keene AF, Tunks M, Kinsela A, White I: Impacts of runoff from sulfuric soils on sediment chemistry in an estuarine lake. Sci Total Environ 2004, 329:115-130.
- [25]Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB: Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 2007, 9:131-142.
- [26]Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jørgensen BB, Jørgensen BB: Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol 2009, 11:1278-1291.
- [27]Habicht KS, Gade M, Tharndrup B, Berg P, Canfield DE: Calibration of sulphate levels in the Archean Ocean. Science 2002, 298:2372-2374.
- [28]Chatterjee S, Dickens GR, Bhatnagar G, Chapman WG, Dugan B, Snyder GT, Hirasaki GJ: Pore water sulfate, alkalinity, and carbon isotopes profiles in shallow sediment above marine gas hydrate systems: a numerical modelling perspective. J Geophys Res 2011, 116:B09103.
- [29]Lyimo TJ, Pol A, den Camp HJMO: Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. Ambi 2002, 31:614-616.
- [30]Staats M, Braster M, Röling WFM: Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environ Microbiol 2011, 13:1216-1227.
- [31]Lahme S, Eberlein C, Jarling R, Kube M, Boll M, Wilkes H, Reinhardt R, Rabus R: Anaerobic degradation of 4-methylbenzoate via a specific 4-methylbenzoyl-CoA pathway. Environ Microbiol 2012, 14:1118-1132.
- [32]Spormann AM, Widdel F: Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 2000, 11:85-105.
- [33]Rabus R, Heider J: Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch Microbiol 1998, 170:377-384.
- [34]Fan L-F, Tang S-L, Chen C-P, Hsieh H-L: Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine freshwater gradient and sulfate availability. Microbiol Aquatic Sys 2011, 63:224-237.
- [35]Taketani RG, Yoshiura CA, Dias ACF, Andreote FD, Tsai SM: Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove. Antonie van Leeuwenhoeck 2010, 97:401-411.
- [36]Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, Lelie D, Vanbroekhoven K: DsrB gene-based DGGE for community and diversity surveys of sulphate-reducing bacteria. J Microbiol Methods 2006, 66:194-205.
- [37]Michel J: Assessment and recommendations for the oil spill cleanup of Guanabara Bay, Brazil. Spill Sci Technol Bull 2000, 6:89-96.
- [38]Heuer H, Smalla K: Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis for studying soil microbial communities. In Modern Soil Microbiology. Edited by Elsas JD, Trevors J, Wellington EMH. New York: Marcel Dekker; 1997:353-373.
- [39]Muyzer G, De Waal EC, Uitterlinden AG: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993, 59:695-700.
- [40]Rosado AS, Duarte GF: Utilização de eletroforese em gel com gradiente de desnaturantes (DGGE) e gel com gradiente de temperatura (TGGE) para estudar a diversidade microbiana. In Genética e melhoramento de microrganismos. Edited by Mello IS, Valadares-Inglis MC, Nass LL, Valois ACC. Jaguariúna: Embrapa Meio Ambiente; 2002:97-128.
- [41]Spence C, Whitehead TR, Cotta MA: Development and comparison of SYBR Green quantitative real-time PCR assays for detection and enumeration of sulfate-reducing bacteria in stored swine manure. J Appl Microbiol 2008, 105:2143-2152.