期刊论文详细信息
BMC Genetics
Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae
Sihai Yang1  Ping Li2  Qiming Deng2  Weina Si1  Ju Huang1 
[1] State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China;Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, China
关键词: Rapid evolution;    Evolutionary features;    Avr-genes;    Magnaporthe oryzae;   
Others  :  866262
DOI  :  10.1186/1471-2156-15-45
 received in 2013-12-03, accepted in 2014-04-07,  发布年份 2014
【 摘 要 】

Background

Rice blast fungus Magnaporthe oryzae is one of the most devastating pathogens in rice. Avirulence genes in this fungus share a gene-for-gene relationship with the resistance genes in its host rice. Although numerous studies have shown that rice blast R-genes are extremely diverse and evolve rapidly in their host populations, little is known about the evolutionary patterns of the Avr-genes in the pathogens.

Results

Here, six well-characterized Avr-genes and seven randomly selected non-Avr control genes were used to investigate the genetic variations in 62 rice blast strains from different parts of China. Frequent presence/absence polymorphisms, high levels of nucleotide variation (~10-fold higher than non-Avr genes), high non-synonymous to synonymous substitution ratios, and frequent shared non-synonymous substitution were observed in the Avr-genes of these diversified blast strains. In addition, most Avr-genes are closely associated with diverse repeated sequences, which may partially explain the frequent presence/absence polymorphisms in Avr-genes.

Conclusion

The frequent deletion and gain of Avr-genes and rapid non-synonymous variations might be the primary mechanisms underlying rapid adaptive evolution of pathogens toward virulence to their host plants, and these features can be used as the indicators for identifying additional Avr-genes. The high number of nucleotide polymorphisms among Avr-gene alleles could also be used to distinguish genetic groups among different strains.

【 授权许可】

   
2014 Huang et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 3. 30KB Image download
71KB Image download
92KB Image download
【 图 表 】

Figure 3.

【 参考文献 】
  • [1]Dai Y, Jia Y, Correll J, Wang X, Wang Y: Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genet Biol 2010, 47(12):973-980.
  • [2]Siluê D, Notteghem JL, Tharreau D: Evidence of a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology 1992, 82(5):577-580.
  • [3]Khang CH, Park S-Y, Lee Y-H, Valent B, Kang S: Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol Plant-Microbe Interact 2008, 21(5):658-670.
  • [4]Flor HH: Current status of the gene-for-gene concept. Annu Rev Phytopathol 1971, 9(1):275-296.
  • [5]Farman ML, Leong SA: Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics 1998, 150(3):1049-1058.
  • [6]Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y: The rice resistance protein pair RGA4/RGA5 recognizes the magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 2013, 25:1463-1481.
  • [7]Bryan GT, Wu K-S, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B: A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 2000, 12(11):2033-2045.
  • [8]Farman ML, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong SA: Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol Plant-Microbe Interact 2002, 15(1):6-16.
  • [9]Fudal I, Böhnert HU, Tharreau D, Lebrun M-H: Transposition of MINE, a composite retrotransposon, in the avirulence gene < i > ACE1 of the rice blast fungus < i > Magnaporthe grisea. Fungal Genet Biol 2005, 42(9):761-772.
  • [10]Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H: The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant-Microbe Interact 2009, 22(4):411-420.
  • [11]Silva JC, Loreto EL, Clark JB: Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol 2004, 6:57-71.
  • [12]Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G-L: The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact 2006, 19(11):1216-1228.
  • [13]Yang S, Zhang X, Yue J-X, Tian D, Chen J-Q: Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Gen Genomics 2008, 280(3):187-198.
  • [14]Yang S, Li J, Zhang X, Zhang Q, Huang J, Chen J-Q, Hartl DL, Tian D: Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease. Proc Natl Acad Sci 2013, 110(46):18572-18577.
  • [15]Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B: A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 2000, 12(11):2019-2032.
  • [16]Kang S, Sweigard JA, Valent B: The PWL host specificity gene family in the blast fungus Magnaporthe grisea. MPMI-Molecular Plant Microbe Interactions 1995, 8(6):939-948.
  • [17]Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B: Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 1995, 7(8):1221-1233.
  • [18]Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B: Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 2000, 19(15):4004-4014.
  • [19]Schneider D, Saraiva A, Azzoni A, Miranda H, de Toledo M, Pelloso A, Souza A: Overexpression and purification of PWL2D, a mutant of the effector protein PWL2 from < i > Magnaporthe grisea. Protein Expr Purif 2010, 74(1):24-31.
  • [20]Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J: Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 2009, 21(5):1573-1591.
  • [21]Xue M, Yang J, Li Z, Hu S, Yao N, Dean RA, Zhao W, Shen M, Zhang H, Li C: Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet 2012, 8(8):e1002869.
  • [22]Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H: The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434(7036):980-986.
  • [23]Sone T, Takeuchi S, Miki S, Satoh Y, Ohtsuka K, Abe A, Asano K: Homologous recombination causes the spontaneous deletion of AVR‒Pia in Magnaporthe oryzae. FEMS Microbiol Lett 2013, 339(2):102-109.
  • [24]Park C-H, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning Y, Wang R, Bellizzi M: The Magnaporthe oryzae Effector AvrPiz-t Targets the RING E3 Ubiquitin Ligase APIP6 to Suppress Pathogen-Associated Molecular Pattern–Triggered Immunity in Rice. Plant Cell 2012, 24(11):4748-4762.
  • [25]Kasetsomboon T, Kate-Ngam S, Sriwongchai T, Zhou B, Jantasuriyarat C: Sequence variation of avirulence gene AVR-Pita1 in rice blast fungus, Magnaporthe oryzae. Mycol Progress 2013, 12(4):617-628.
  • [26]Ballini E, Morel J-B, Droc G, Price A, Courtois B, Notteghem J-L, Tharreau D: A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact 2008, 21(7):859-868.
  • [27]Valent B, Khang CH: Recent advances in rice blast effector research. Curr Opin Plant Biol 2010, 13(4):434-441.
  • [28]McDonald BA, Linde C: Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 2002, 40(1):349-379.
  • [29]Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y: Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 2011, 7(7):e1002147.
  • [30]Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R: Arms race co‒evolution of Magnaporthe oryzae AVR‒Pik and rice Pik genes driven by their physical interactions. Plant J 2012, 72(6):894-907.
  • [31]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [32]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [33]Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R: DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19(18):2496-2497.
  文献评价指标  
  下载次数:8次 浏览次数:19次