期刊论文详细信息
BMC Genomics
Transcriptome assemblies for studying sex-biased gene expression in the guppy, Poecilia reticulata
Christine Dreyer1  Detlef Weigel1  Stefan R Henz1  Verena A Kottler1  Gideon Zipprich2  Bonnie A Fraser1  Axel Künstner1  Eshita Sharma3 
[1] Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany;Present address: Division of Theoretical Bioinformatics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;Present address: Bioinformatics and Statistical Genetics Core, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, OX3 7BN Oxford, UK
关键词: Coding sequence evolution;    RNA-seq;    Sexual dimorphism;    Sex-biased genes;    Genome-guided transcriptome;    de novo transcriptome;    Guppy;   
Others  :  1217197
DOI  :  10.1186/1471-2164-15-400
 received in 2014-01-06, accepted in 2014-05-09,  发布年份 2014
PDF
【 摘 要 】

Background

Sexually dimorphic phenotypes are generally associated with differential gene expression between the sexes. The study of molecular evolution and genomic location of these differentially expressed, or sex-biased, genes is important for understanding inter-sexual divergence under sex-specific selection pressures. Teleost fish provide a unique opportunity to examine this divergence in the presence of variable sex-determination mechanisms of recent origin. The guppy, Poecilia reticulata, displays sexual dimorphism in size, ornaments, and behavior, traits shaped by natural and sexual selection in the wild.

Results

To gain insight into molecular mechanisms underlying the guppy’s sexual dimorphism, we assembled a reference transcriptome combining genome-independent as well as genome-guided assemblies and analyzed sex-biased gene expression between different tissues of adult male and female guppies. We found tissue-associated sex-biased expression of genes related to pigmentation, signal transduction, and spermatogenesis in males; and growth, cell-division, extra-cellular matrix organization, nutrient transport, and folliculogenesis in females. While most sex-biased genes were randomly distributed across linkage groups, we observed accumulation of ovary-biased genes on the sex linkage group, LG12. Both testis-biased and ovary-biased genes showed a significantly higher rate of non-synonymous to synonymous substitutions (dN/dS) compared to unbiased genes. However, in somatic tissues only female-biased genes, including those co-expressed in multiple tissues, showed elevated ratios of non-synonymous substitutions.

Conclusions

Our work identifies a set of annotated gene products that are candidate factors affecting sexual dimorphism in guppies. The differential genomic distribution of gonad-biased genes provides evidence for sex-specific selection pressures acting on the nascent sex chromosomes of the guppy. The elevated rates of evolution of testis-biased and female-biased genes indicate differing evolution under distinct selection pressures on the reproductive versus non-reproductive tissues.

【 授权许可】

   
2014 Sharma et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705054558282.pdf 3723KB PDF download
Figure 6. 23KB Image download
Figure 5. 29KB Image download
Figure 4. 51KB Image download
Figure 3. 109KB Image download
Figure 2. 86KB Image download
Figure 1. 142KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Rowe L, Day T: Detecting sexual conflict and sexually antagonistic coevolution. Philos Trans R Soc Lond Ser B Biol Sci 2006, 361(1466):277-285.
  • [2]Lande R: Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution; Int J of organic evolution 1980, 34(2):292-305.
  • [3]Hedrick AV, Temeles EJ: The evolution of sexual dimorphism in animals: hypotheses and tests. Trends Ecol Evol 1989, 4(5):136-138.
  • [4]Rice WR: Sex chromosomes and the evolution of sexual dimorphism. Evolution; Int J Organic Evolution 1984, 38(4):735-742.
  • [5]Rhen T: Sex-limited mutations and the evolution of sexual dimorphism. Evolution; Int J Organic Evolution 2000, 54(1):37-43.
  • [6]Mank JE: Sex chromosomes and the evolution of sexual dimorphism: lessons from the genome. Am Nat 2009, 173(2):141-150.
  • [7]Connallon T, Clark AG: Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression. Evolution; Int J Organic Evolution 2010, 64(12):3417-3442.
  • [8]Ellegren H, Parsch J: The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet 2007, 8(9):689-698.
  • [9]Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ: Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006, 16(8):995-1004.
  • [10]Small CM, Carney GE, Mo Q, Vannucci M, Jones AG: A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: evidence for masculinization of the transcriptome. BMC Genomics 2009, 10:579. BioMed Central Full Text
  • [11]Mank JE, Hultin-Rosenberg L, Webster MT, Ellegren H: The unique genomic properties of sex-biased genes: insights from avian microarray data. BMC Genomics 2008, 9:148. BioMed Central Full Text
  • [12]Pointer MA, Harrison PW, Wright AE, Mank JE: Masculinization of gene expression is associated with exaggeration of male sexual dimorphism. PLoS Genet 2013, 9(8):e1003697.
  • [13]Parisi M, Nuttall R, Edwards P, Minor J, Naiman D, Lu J, Doctolero M, Vainer M, Chan C, Malley J, Eastman S, Oliver B: A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults. Genome Biol 2004, 5(6):R40. BioMed Central Full Text
  • [14]Xia Q, Cheng D, Duan J, Wang G, Cheng T, Zha X, Liu C, Zhao P, Dai F, Zhang Z: Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol 2007, 8(8):R162. BioMed Central Full Text
  • [15]Parsch J, Ellegren H: The evolutionary causes and consequences of sex-biased gene expression. Nat Rev Genet 2013, 14(2):83-87.
  • [16]Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ravi Ram K, Sirot LK, Levesque L, Artieri CG, Wolfner MF, Civetta A, Singh RS: Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 2007, 177(3):1321-1335.
  • [17]Proschel M, Zhang Z, Parsch J: Widespread adaptive evolution of Drosophila genes with sex-biased expression. Genetics 2006, 174(2):893-900.
  • [18]Meisel RP: Towards a more nuanced understanding of the relationship between sex-biased gene expression and rates of protein-coding sequence evolution. Mol Biol Evol 2011, 28(6):1893-1900.
  • [19]Assis R, Zhou Q, Bachtrog D: Sex-biased transcriptome evolution in Drosophila. Genome Biol Evolution 2012, 4(11):1189-1200.
  • [20]Ellegren H: Emergence of male-biased genes on the chicken Z-chromosome: sex-chromosome contrasts between male and female heterogametic systems. Genome Res 2011, 21(12):2082-2086.
  • [21]Meisel RP, Malone JH, Clark AG: Disentangling the relationship between sex-biased gene expression and X-linkage. Genome Res 2012, 22(7):1255-1265.
  • [22]Leder EH, Cano JM, Leinonen T, O'Hara RB, Nikinmaa M, Primmer CR, Merila J: Female-biased expression on the X chromosome as a key step in sex chromosome evolution in threespine sticklebacks. Mol Biol Evol 2010, 27(7):1495-1503.
  • [23]Vicoso B, Kaiser VB, Bachtrog D: Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proc Natl Acad Sci U S A 2013, 110(16):6453-6458.
  • [24]Whittle CA, Johannesson H: Evolutionary dynamics of Sex-biased genes in a hermaphrodite fungus. Mol Biol Evol 2013, 30(11):2435-2446.
  • [25]Devlin RH, Nagahama Y: Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 2002, 208(3–4):191-364.
  • [26]Volff JN, Schartl M: Variability of genetic sex determination in poeciliid fishes. Genetica 2001, 111(1–3):101-110.
  • [27]Schultheis C, Böhne A, Schartl M, Volff JN, Galiana-Arnoux D: Sex determination diversity and Sex chromosome evolution in poeciliid fish. Sexual Dev 2009, 3(2–3):68-77.
  • [28]Evans JP, Pilastro A: Ecology and Evolution of Poeciliid Fishes. Chicago, IL [etc.]: The University of Chicago Press; 2011.
  • [29]Endler J: Natural and sexual selection on color patterns in poeciliid fishes. Environ Biol Fish 1983, 9(2):173-190.
  • [30]Bisazza A, Pilastro A: Small male mating advantage and reversed size dimorphism in poeciliid fishes. J Fish Biol 1997, 50(2):397-406.
  • [31]Winge Ö: The location of eighteen genes in Lebistes reticulatus. J of Gen 1927, 18(1):1-43.
  • [32]Reznick D, Endler JA: The impact of predation on life-history evolution in trinidadian guppies (Poecilia reticulata). Evolution; Int J Organic Evolution 1982, 36(1):160-177.
  • [33]Fisher RAS: The evolution of dominance. Biol Rev 1931, 6:345-368.
  • [34]Brooks R: Negative genetic correlation between male sexual attractiveness and survival. Nature 2000, 406(6791):67-70.
  • [35]Postma E, Spyrou N, Rollins LA, Brooks RC: Sex-dependent selection differentially shapes genetic variation on and off the guppy Y chromosome. Evolution; Int J Organic Evolution 2011, 65(8):2145-2156.
  • [36]Houde AE, Endler JA: Correlated evolution of female mating preferences and male color patterns in the guppy poecilia reticulata. Science 1990, 248(4961):1405-1408.
  • [37]Brooks R, Endler JA: Female guppies agree to differ: Phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. Evolution; Int J Organic Evolution 2001, 55(8):1644-1655.
  • [38]Houde A: Sex, Color, and Mate Choice in Guppies. Princeton, New Jersey: Princeton University Press; 1997.
  • [39]Magurran AE: Sexual conflict and evolution in Trinidadian guppies. Genetica 2001, 112–113:463-474.
  • [40]Magurran AE: Battle of the sexes. Nature 1996, 383(6598):307.
  • [41]Kemp DJ, Reznick DN, Grether GF, Endler JA: Predicting the direction of ornament evolution in Trinidadian guppies (Poecilia reticulata). Proceedings Biol Sci / The Royal Soc 2009, 276(1677):4335-4343.
  • [42]Griffiths SW, Magurran AE: Sex and schooling behaviour in the Trinidadian guppy. Anim Behav 1998, 56(3):689-693.
  • [43]Brooks R, Endler JA: Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata). Evolution; Int J Organic Evolution 2001, 55(5):1002-1015.
  • [44]Reznick DNM,DB: Review of Life-history Patterns in Poeciliid Fishes. In Ecology and Evolution of Livebearing Fishes (Poeciliidae). Englewood Cliffs, New Jersey: Prentice Hall; 1989.
  • [45]Tripathi N, Hoffmann M, Willing EM, Lanz C, Weigel D, Dreyer C: Genetic linkage map of the guppy, Poecilia reticulata, and quantitative trait loci analysis of male size and colour variation. Proceedings Biol Sci/The Royal Soc 2009, 276(1665):2195-2208.
  • [46]Dreyer C, Hoffmann M, Lanz C, Willing EM, Riester M, Warthmann N, Sprecher A, Tripathi N, Henz SR, Weigel D: ESTs and EST-linked polymorphisms for genetic mapping and phylogenetic reconstruction in the guppy, Poecilia reticulata. BMC Genomics 2007, 8:269. BioMed Central Full Text
  • [47]Fraser BA, Weadick CJ, Janowitz I, Rodd FH, Hughes KA: Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome. BMC Genomics 2011, 12:202. BioMed Central Full Text
  • [48]Haskins CP, Haskins EF, McLaughlin JJA, Hewitt RE: Polymorphism and population structure in Lebistes reticulatus, an ecological study. In Vertebrate Speciation. Edited by Blair WF. Austin: Austin, Texas: University of Texas Press; 1961:320-395.
  • [49]Gordon SP, Lopez-Sepulcre A, Reznick DN: Predation-associated differences in sex linkage of wild guppy coloration. Evolution; Int J Organic Evolution 2012, 66(3):912-918.
  • [50]Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O'Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P, Tully RE, Wallin C, Webb D, Weber J, Wu W, DiCuccio M, Kitts P, Maglott DR, Murphy TD, Ostell JM: RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 2014, 42(Database issue):D756-D763. ftp://ftp.ncbi.nih.gov/blast/db
  • [51]Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, Braasch I, Chalopin D, Volff JN, Lesch KP, Bisazza A, Minx P, Hillier L, Wilson RK, Fuerstenberg S, Boore J, Searle S, Postlethwait JH, Warren WC: The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet 2013, 45(5):567-572.
  • [52]Braasch I, Brunet F, Volff JN, Schartl M: Pigmentation pathway evolution after whole-genome duplication in fish. Genome Biol Evolution 2009, 1:479-493.
  • [53]Tripathi N, Hoffmann M, Weigel D, Dreyer C: Linkage analysis reveals the independent origin of Poeciliid sex chromosomes and a case of atypical sex inheritance in the guppy (Poecilia reticulata). Genetics 2009, 182(1):365-374.
  • [54]Subramanian S, Kumar S: Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics 2004, 168(1):373-381.
  • [55]Vijay N, Poelstra JW, Kunstner A, Wolf JB: Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol Ecol 2013, 22(3):620-634.
  • [56]Lu B, Zeng Z, Shi T: Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq. Sci China Life Sci 2013, 56(2):143-155.
  • [57]Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S, Chapman JA, Chapuis G, Chikhi R, Chitsaz H, Chou WC, Corbeil J, Del Fabbro C, Docking TR, Durbin R, Earl D, Emrich S, Fedotov P, Fonseca NA Ganapathy G, Gibbs RA, Gnerre S, Godzaridis E, Goldstein S, Haimel M, Hall G, Haussler D, Hiatt JB, Ho IY, et al.: Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaSci 2013, 2(1):10. BioMed Central Full Text
  • [58]Magurran AE: Evolutionary Ecology:The Trinidadian Guppy. Oxford: Oxford University Press; 2005.
  • [59]Reznick D: The structure of guppy life histories: the tradeoff between growth and reproduction. Ecology 1983, 64(4):862-873.
  • [60]Kaslin J, Ganz J, Brand M: Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos Trans R Soc Lond Ser B Biol Sci 2008, 363(1489):101-122.
  • [61]Le Page Y, Diotel N, Vaillant C, Pellegrini E, Anglade I, Merot Y, Kah O: Aromatase, brain sexualization and plasticity: the fish paradigm. Eur J Neuro Sci 2010, 32(12):2105-2115.
  • [62]Wlodarczyk J, Mukhina I, Kaczmarek L, Dityatev A: Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Dev Neurobiol 2011, 71(11):1040-1053.
  • [63]Fujioka H, Dairyo Y, Yasunaga K, Emoto K: Neural functions of matrix metalloproteinases: plasticity, neurogenesis, and disease. Biochem Res Int 2012, 2012:789083.
  • [64]Reader SM, Laland KN: Diffusion of foraging innovations in the guppy. Anim Behav 2000, 60(2):175-180.
  • [65]Magurran AE, Garcia CM: Sex differences in behaviour as an indirect consequence of mating system. J Fish Biol 2000, 57(4):839-857.
  • [66]Mensah E, Volkoff H, Unniappan S: Galanin Systems in Non-mammalian Vertebrates with Special Focus on Fishes. In Galanin. Edited by Hökfelt T. Basel: Springer; 2010:243-262. vol. 102
  • [67]Cornbrooks EB, Parsons RL: Sexually dimorphic distribution of a galanin-like peptide in the central nervous system of the teleost fish Poecilia latipinna. J Comp Neurol 1991, 304(4):639-657.
  • [68]Cornbrooks EB, Parsons RL: Source of sexually dimorphic galanin-like immunoreactive projections in the teleost fish Poecilia latipinna. J Comp Neurol 1991, 304(4):658-665.
  • [69]Li MH, Yang HH, Li MR, Sun YL, Jiang XL, Xie QP, Wang TR, Shi HJ, Sun LN, Zhou LY, Wang DS: Antagonistic roles of Dmrt1 and Foxl2 in Sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology 2013, 154(12):4814-4825.
  • [70]Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y: Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod 2008, 78(2):333-341.
  • [71]Sinclair A, Smith C: Females battle to suppress their inner male. Cell 2009, 139(6):1051-1053.
  • [72]Uhlenhaut NH, Treier M: Forkhead transcription factors in ovarian function. Reproduction 2011, 142(4):489-495.
  • [73]Thibault RE, Schultz RJ: Reproductive adaptations among viviparous fishes (Cyprinodontiformes: Poeciliidae). Evolution; Int J Organic Evol 1978, 32(2):320-333.
  • [74]Turner CL: Pseudoamnion, pseudochorion, and follicular pseudoplacenta in poeciliid fishes. J Morphol 1940, 67(1):59-89.
  • [75]Jollie WP, Jollie LG: The fine structure of the ovarian follicle of the ovoviviparous poeciliid fish, Lebistes reticulatus. I. Maturation of follicular epithelium. J Morphol 1964, 114(3):479-501.
  • [76]Parisi M, Nuttall R, Naiman D, Bouffard G, Malley J, Andrews J, Eastman S, Oliver B: Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 2003, 299(5607):697-700.
  • [77]Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD: The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat Genet 2004, 36(6):642-646.
  • [78]Traut W, Winking H: Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Res 2001, 9(8):659-672.
  • [79]Mank JE, Hultin-Rosenberg L, Axelsson E, Ellegren H: Rapid evolution of female-biased, but not male-biased, genes expressed in the avian brain. Mol Biol Evol 2007, 24(12):2698-2706.
  • [80]Grath S, Parsch J: Rate of amino acid substitution is influenced by the degree and conservation of male-biased transcription over 50 myr of Drosophila evolution. Genome Biol Evolution 2012, 4(3):346-359.
  • [81]Mank JE, Ellegren H: Are sex-biased genes more dispensable? Biol Lett 2009, 5(3):409-412.
  • [82]Mank JE, Nam K, Brunstrom B, Ellegren H: Ontogenetic complexity of sexual dimorphism and sex-specific selection. Mol Biol Evol 2010, 27(7):1570-1578.
  • [83]Swanson WJ, Vacquier VD: The rapid evolution of reproductive proteins. Nat Rev Genet 2002, 3(2):137-144.
  • [84]Gavrilets S: Rapid evolution of reproductive barriers driven by sexual conflict. Nature 2000, 403(6772):886-889.
  • [85]Miller GT, Pitnick S: Sperm-female coevolution in Drosophila. Science 2002, 298(5596):1230-1233.
  • [86]Ludlow AM, Magurran AE: Gametic isolation in guppies (Poecilia reticulata). Proceedings Biol Sci / The Royal Soc 2006, 273(1600):2477-2482.
  • [87]Price AC, Helen Rodd F: The effect of social environment on male–male competition in guppies (Poecilia reticulata). Ethology 2006, 112(1):22-32.
  • [88]Herdman EJE, Kelly CD, Godin J-GJ: Male mate choice in the guppy (Poecilia reticulata): Do males prefer larger females as mates? Ethology 2004, 110(2):97-111.
  • [89]Reznick DN, Shaw FH, Rodd FH, Shaw RG: Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 1997, 275(5308):1934-1937.
  • [90]Mank JE, Hultin-Rosenberg L, Zwahlen M, Ellegren H: Pleiotropic constraint hampers the resolution of sexual antagonism in vertebrate gene expression. Am Nat 2008, 171(1):35-43.
  • [91]Postlethwait J, Amores A, Cresko W, Singer A, Yan Y-L: Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 2004, 20(10):481-490.
  • [92]Willing EM, Bentzen P, van Oosterhout C, Hoffmann M, Cable J, Breden F, Weigel D, Dreyer C: Genome-wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies. Mol Ecol 2010, 19(5):968-984.
  • [93]Martyn U, Weigel D, Dreyer C: In vitro culture of embryos of the guppy, Poecilia reticulata. Dev Dynam 2006, 235(3):617-622.
  • [94]Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen JE, Weigel D, Andersen SU: SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 2009, 6(8):550-551.
  • [95]Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011, 17:10-12.
  • [96]Smeds L, Kunstner A: ConDeTri–a content dependent read trimmer for Illumina data. PLoS One 2011, 6(10):e26314.
  • [97]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29(7):644-652.
  • [98]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5):511-515.
  • [99]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols 2012, 7(3):562-578.
  • [100]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22(13):1658-1659.
  • [101]Fu L, Niu B, Zhu Z, Wu S, Li W: CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28(23):3150-3152.
  • [102]Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Garcia-Giron C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kahari AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, et al.: Ensembl 2013. Nucleic Acids Res 2013, 41(Database issue):D48-D55.
  • [103]Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ: Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011, 12:124. BioMed Central Full Text
  • [104]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [105]Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH: A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data. 2012. eprint arXiv:1203.4802
  • [106]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9(4):357-359.
  • [107]Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36(10):3420-3435.
  • [108]Wu TD, Watanabe CK: GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 2005, 21(9):1859-1875.
  • [109]Roberts A, Pachter L: Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 2013, 10(1):71-73.
  • [110]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80. BioMed Central Full Text
  • [111]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
  • [112]Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11(3):R25. BioMed Central Full Text
  • [113]Robinson MD, Smyth GK: Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 2007, 23(21):2881-2887.
  • [114]Alexa A, Rahnenfuhrer J: TopGO: topGO: enrichment analysis for gene ontology. R package version 2.10.0. 2010.
  • [115]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser 1995, B 57(1):289-300.
  • [116]R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria: R version 2.15.2; 2012.
  • [117]Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013, 30(4):772-780.
  • [118]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  文献评价指标  
  下载次数:55次 浏览次数:21次