期刊论文详细信息
BMC Genomics
Incomplete meiotic sex chromosome inactivation in the domestic dog
Willy M Baarends2  J Anton Grootegoed2  Joop SE Laven3  Wilfred FJ van IJcken1  Johan A Slotman5  Wiggert A van Cappellen5  Godfried W van der Heijden3  Jos W Hoogerbrugge2  Evelyne Wassenaar2  Sam Schoenmakers3  Eskeatnaf Mulugeta4  Federica Federici2 
[1] Erasmus Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands;Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, 3000 CA, The Netherlands;Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, 3000 CA, The Netherlands;Present address: Institut Curie, Genetics and Developmental Biology, Unit 11 et 13 rue Pierre et Marie Curie, Paris, 75248, Cedex 05, France;Department of Pathology, Erasmus Optical Imaging Centre, Rotterdam, 3000 CA, The Netherlands
关键词: DNA double-strand break repair;    Spermatids;    Spermatocytes;    Dog;    MSCI;    Transcriptome;    Synaptonemal complex;    Meiotic sex chromosome inactivation;    Spermatogenesis;    Sex chromosomes;    Meiosis;   
Others  :  1173979
DOI  :  10.1186/s12864-015-1501-9
 received in 2014-12-12, accepted in 2015-03-30,  发布年份 2015
PDF
【 摘 要 】

Background

In mammalian meiotic prophase, homologous chromosome recognition is aided by formation and repair of programmed DNA double-strand breaks (DSBs). Subsequently, stable associations form through homologous chromosome synapsis. In male mouse meiosis, the largely heterologous X and Y chromosomes synapse only in their short pseudoautosomal regions (PARs), and DSBs persist along the unsynapsed non-homologous arms of these sex chromosomes. Asynapsis of these arms and the persistent DSBs then trigger transcriptional silencing through meiotic sex chromosome inactivation (MSCI), resulting in formation of the XY body. This inactive state is partially maintained in post-meiotic haploid spermatids (postmeiotic sex chromatin repression, PSCR). For the human, establishment of MSCI and PSCR have also been reported, but X-linked gene silencing appears to be more variable compared to mouse. To gain more insight into the regulation and significance of MSCI and PSCR among different eutherian species, we have performed a global analysis of XY pairing dynamics, DSB repair, MSCI and PSCR in the domestic dog (Canis lupus familiaris), for which the complete genome sequence has recently become available, allowing a thorough comparative analyses.

Results

In addition to PAR synapsis between X and Y, we observed extensive self-synapsis of part of the dog X chromosome, and rapid loss of known markers of DSB repair from that part of the X. Sequencing of RNA from purified spermatocytes and spermatids revealed establishment of MSCI. However, the self-synapsing region of the X displayed higher X-linked gene expression compared to the unsynapsed area in spermatocytes, and was post-meiotically reactivated in spermatids. In contrast, genes in the PAR, which are expected to escape MSCI, were expressed at very low levels in both spermatocytes and spermatids. Our comparative analysis was then used to identify two X-linked genes that may escape MSCI in spermatocytes, and 21 that are specifically re-activated in spermatids of human, mouse and dog.

Conclusions

Our data indicate that MSCI is incomplete in the dog. This may be partially explained by extensive, but transient, self-synapsis of the X chromosome, in association with rapid completion of meiotic DSB repair. In addition, our comparative analysis identifies novel candidate male fertility genes.

【 授权许可】

   
2015 Federici et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150423025543478.pdf 4019KB PDF download
Figure 11. 161KB Image download
Figure 10. 134KB Image download
Figure 9. 169KB Image download
Figure 8. 45KB Image download
Figure 7. 173KB Image download
Figure 6. 176KB Image download
Figure 5. 148KB Image download
Figure 4. 102KB Image download
Figure 3. 170KB Image download
Figure 2. 134KB Image download
Figure 1. 15KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Perry J, Palmer S, Gabriel A, Ashworth A: A short pseudoautosomal region in laboratory mice. Genome Res 2001, 11:1826-32.
  • [2]Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, et al.: The DNA sequence of the human X chromosome. Nature 2005, 434:325-37.
  • [3]Young AC, Kirkness EF, Breen M: Tackling the characterization of canine chromosomal breakpoints with an integrated in-situ/in-silico approach: the canine PAR and PAB. Chromosome Res 2008, 16:1193-202.
  • [4]Li G, Davis BW, Raudsepp T, Pearks Wilkerson AJ, Mason VC, Ferguson-Smith M, et al.: Comparative analysis of mammalian Y chromosomes illuminates ancestral structure and lineage-specific evolution. Genome Res 2013, 23:1486-95.
  • [5]Henke A, Fischer C, Rappold GA: Genetic map of the human pseudoautosomal region reveals a high rate of recombination in female meiosis at the Xp telomere. Genomics 1993, 18:478-85.
  • [6]Hinch AG, Altemose N, Noor N, Donnelly P, Myers SR: Recombination in the human Pseudoautosomal region PAR1. PLoS Genet 2014, 10:e1004503.
  • [7]Page DC, Bieker K, Brown LG, Hinton S, Leppert M, Lalouel JM, et al.: Linkage, physical mapping, and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosomes. Genomics 1987, 1:243-56.
  • [8]Rouyer F, Simmler MC, Johnsson C, Vergnaud G, Cooke HJ, Weissenbach J: A gradient of sex linkage in the pseudoautosomal region of the human sex chromosomes. Nature 1986, 319:291-5.
  • [9]Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B: The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci 2002, 115:1611-22.
  • [10]Keeney S, Baudat F, Angeles M, Zhou ZH, Copeland NG, Jenkins NA, et al.: A mouse homolog of the Saccharomyces cerevisiae meiotic recombination DNA transesterase Spo11p. Genomics 1999, 61:170-82.
  • [11]Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, Blanco-Rodriguez J, et al.: Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 2001, 27:271-6.
  • [12]Smagulova F, Gregoretti IV, Brick K, Khil P, Camerini-Otero RD, Petukhova GV: Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 2011, 472:375-8.
  • [13]Schwacha A, Kleckner N: Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 1997, 90:1123-35.
  • [14]Bolcun-Filas E, Schimenti JC: Genetics of meiosis and recombination in mice. Int Rev Cell Mol Biol 2012, 298:179-227.
  • [15]Yang F, Wang PJ: The Mammalian synaptonemal complex: a scaffold and beyond. Genome Dyn 2009, 5:69-80.
  • [16]Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HHQ: Rad51 immunocytology in rat and mouse spermatocytes and oocytes. Chromosoma 1997, 106:207-15.
  • [17]Cole F, Kauppi L, Lange J, Roig I, Wang R, Keeney S, et al.: Homeostatic control of recombination is implemented progressively in mouse meiosis. Nat Cell Biol 2012, 14:424-30.
  • [18]Carofiglio F, Inagaki A, de Vries S, Wassenaar E, Schoenmakers S, Vermeulen C, et al.: SPO11-independent DNA repair foci and their role in meiotic silencing. PLoS Genet 2013, 9:e1003538.
  • [19]Lammers JH, Offenberg HH, van Aalderen M, Vink AC, Dietrich AJ, Heyting C: The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol Cell Biol 1994, 14:1137-46.
  • [20]Offenberg HH, Schalk JA, Meuwissen RL, van Aalderen M, Kester HA, Dietrich AJ, et al.: SCP2: a major protein component of the axial elements of synaptonemal complexes of the rat. Nucleic Acids Res 1998, 26:2572-9.
  • [21]Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, et al.: Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet 2009, 5:e1000702.
  • [22]Meuwissen RL, Offenberg HH, Dietrich AJ, Riesewijk A, van Iersel M, Heyting C: A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J 1992, 11:5091-100.
  • [23]Hamer G, Gell K, Kouznetsova A, Novak I, Benavente R, Hoog C: Characterization of a novel meiosis-specific protein within the central element of the synaptonemal complex. J Cell Sci 2006, 119:4025-32.
  • [24]Solari AJ: The behavior of the XY pair in mammals. Int Rev Cytol 1974, 38:273-317.
  • [25]Solari AJ: The spatial relationship of the X and Y chromosomes during meiotic prophase in mouse spermatocytes. Chromosoma 1970, 29:217-36.
  • [26]Tres LL: Extensive pairing of the XY bivalent in mouse spermatocytes as visualized by whole-mount electron microscopy. J Cell Sci 1977, 25:1-15.
  • [27]Turner JM: Meiotic sex chromosome inactivation. Development 2007, 134:1823-31.
  • [28]McKee BD, Handel MA: Sex chromosomes, recombination, and chromatin conformation. Chromosoma 1993, 102:71-80.
  • [29]Monesi V: Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse. Chromosoma 1965, 17:11-21.
  • [30]Namekawa SH, VandeBerg JL, McCarrey JR, Lee JT: Sex chromosome silencing in the marsupial male germ line. Proc Natl Acad Sci U S A 2007, 104:9730-5.
  • [31]Franco MJ, Sciurano RB, Solari AJ: Protein immunolocalization supports the presence of identical mechanisms of XY body formation in eutherians and marsupials. Chromosome Res 2007, 15:815-24.
  • [32]Echeverria OM, Benavente R, Ortiz R, Vazquez-Nin GH: Ultrastructural and immunocytochemical analysis of the XY body in rat and Guinea pig. Eur J Histochem 2003, 47:45-54.
  • [33]Solari AJ, Pigozzi MI: Fine structure of the XY body in the XY1Y2 trivalent of the bat Artibeus lituratus. Chromosome Res 1994, 2:53-8.
  • [34]Villagomez DA: Zygotene-pachytene substaging and synaptonemal complex karyotyping of boar spermatocytes. Hereditas 1993, 118:87-99.
  • [35]Ansari HA, Jung HR, Hediger R, Fries R, Konig H, Stranzinger G: A balanced autosomal reciprocal translocation in an azoospermic bull. Cytogenet Cell Genet 1993, 62:117-23.
  • [36]Libbus BL: The ordered arrangement of chromosomes in the Chinese hamster spermatocyte nucleus. Hum Genet 1985, 70:130-5.
  • [37]Moses MJ: Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). II. Morphology of the XY pair in spread preparations. Chromosoma 1977, 60:127-37.
  • [38]Sciurano RB, Rahn MI, Rossi L, Luaces JP, Merani MS, Solari AJ: Synapsis, recombination, and chromatin remodeling in the XY body of armadillos. Chromosome Res 2012, 20:293-302.
  • [39]Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR, Griswold MD, et al.: Postmeiotic sex chromatin in the male germline of mice. Curr Biol 2006, 16:660-7.
  • [40]Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS: Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev Cell 2006, 10:521-9.
  • [41]Mueller JL, Mahadevaiah SK, Park PJ, Warburton PE, Page DC, Turner JM: The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat Genet 2008, 40:794-9.
  • [42]Mulugeta Achame E, Wassenaar E, Hoogerbrugge JW, Sleddens-Linkels E, Ooms M, Sun ZW, et al.: The ubiquitin-conjugating enzyme HR6B is required for maintenance of X chromosome silencing in mouse spermatocytes and spermatids. BMC Genomics 2010, 11:367. BioMed Central Full Text
  • [43]Sin HS, Ichijima Y, Koh E, Namiki M, Namekawa SH: Human postmeiotic sex chromatin and its impact on sex chromosome evolution. Genome Res 2012, 22:827-36.
  • [44]Mulugeta Achame E, Baarends WM, Gribnau J, Grootegoed JA: Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human. PLoS One 2010, 5:e15598.
  • [45]Lesch BJ, Dokshin GA, Young RA, McCarrey JR, Page DC: A set of genes critical to development is epigenetically poised in mouse germ cells from fetal stages through completion of meiosis. Proc Natl Acad Sci U S A 2013, 110:16061-6.
  • [46]Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H, et al.: Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 2013, 3:2179-90.
  • [47]Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, et al.: Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 2005, 37:41-7.
  • [48]Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge JW, Sleddens-Linkels E, Hoeijmakers JH, et al.: Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 2005, 25:1041-53.
  • [49]Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A, et al.: Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 2010, 20:2117-23.
  • [50]Burgoyne PS, Mahadevaiah SK, Turner JM: The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 2009, 10:207-16.
  • [51]Homolka D, Ivanek R, Capkova J, Jansa P, Forejt J: Chromosomal rearrangement interferes with meiotic X chromosome inactivation. Genome Res 2007, 17:1431-7.
  • [52]de Vries M, Vosters S, Merkx G, D'Hauwers K, Wansink DG, Ramos L, et al.: Human male meiotic sex chromosome inactivation. PLoS One 2012, 7:e31485.
  • [53]Schoenmakers S, Wassenaar E, Hoogerbrugge JW, Laven JS, Grootegoed JA, Baarends WM: Female meiotic sex chromosome inactivation in chicken. PLoS Genet 2009, 5:e1000466.
  • [54]Schoenmakers S, Wassenaar E, Laven JS, Grootegoed JA, Baarends WM: Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch. Chromosoma 2010, 119:311-24.
  • [55]O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, et al.: The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 2013, 339:662-7.
  • [56]Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al.: Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005, 438:803-19.
  • [57]Basheva EA, Bidau CJ, Borodin PM: General pattern of meiotic recombination in male dogs estimated by MLH1 and RAD51 immunolocalization. Chromosome Res 2008, 16:709-19.
  • [58]van der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P, Ramos L, et al.: Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 2007, 39:251-8.
  • [59]Inagaki A, Schoenmakers S, Baarends WM: DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis. Epigenetics 2010, 5:255-66.
  • [60]Rogakou EP, Boon C, Redon C, Bonner WM: Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 1999, 146:905-16.
  • [61]Bellani MA, Romanienko PJ, Cairatti DA, Camerini-Otero RD: SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm−/− spermatocytes. J Cell Sci 2005, 118:3233-45.
  • [62]Royo H, Prosser H, Ruzankina Y, Mahadevaiah SK, Cloutier JM, Baumann M, et al.: ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing. Genes Dev 2013, 27:1484-94.
  • [63]Foote RH, Swierstra EE, Hunt WL: Spermatogenesis in the dog. Anat Rec 1972, 173:341-51.
  • [64]Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, et al.: H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 2003, 4:497-508.
  • [65]Hsin JP, Manley JL: The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012, 26:2119-37.
  • [66]Khalil AM, Boyar FZ, Driscoll DJ: Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci U S A 2004, 101:16583-7.
  • [67]Cocquet J, Ellis PJ, Yamauchi Y, Mahadevaiah SK, Affara NA, Ward MA, et al.: The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis. PLoS Biol 2009, 7:e1000244.
  • [68]Baarends WM, Wassenaar E, Hoogerbrugge JW, Schoenmakers S, Sun ZW, Grootegoed JA: Increased phosphorylation and dimethylation of XY body histones in the Hr6b-knockout mouse is associated with derepression of the X chromosome. J Cell Sci 2007, 120:1841-51.
  • [69]Mueller JL, Skaletsky H, Brown LG, Zaghlul S, Rock S, Graves T, et al.: Independent specialization of the human and mouse X chromosomes for the male germ line. Nat Genet 2013, 45:1083-7.
  • [70]Page J, de la Fuente R, Manterola M, Parra MT, Viera A, Berrios S, et al.: Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis? Chromosoma 2012, 121:307-26.
  • [71]Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED: Histological and histopathological evaluation of the testis. Cache River Press, Clearwater, FL, USA; 1990.
  • [72]Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS: Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 2009, 16:45-58.
  • [73]Daniel K, Lange J, Hached K, Fu J, Anastassiadis K, Roig I, et al.: Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nat Cell Biol 2011, 13:599-610.
  • [74]Wojtasz L, Cloutier JM, Baumann M, Daniel K, Varga J, Fu J, et al.: Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Genes Dev 2012, 26:958-73.
  • [75]Ahmed EA, Philippens ME, Kal HB, de Rooij DG, de Boer P: Genetic probing of homologous recombination and non-homologous end joining during meiotic prophase in irradiated mouse spermatocytes. Mutat Res 2010, 688:12-8.
  • [76]Sasaki M, Lange J, Keeney S: Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 2010, 11:182-95.
  • [77]Froyen G, Belet S, Martinez F, Santos-Reboucas CB, Declercq M, Verbeeck J, et al.: Copy-number gains of HUWE1 due to replication- and recombination-based rearrangements. Am J Hum Genet 2012, 91:252-64.
  • [78]Lange J, Noordam MJ, van Daalen SK, Skaletsky H, Clark BA, Macville MV, et al.: Intrachromosomal homologous recombination between inverted amplicons on opposing Y-chromosome arms. Genomics 2013, 102:257-64.
  • [79]Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W: Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 2009, 41:488-93.
  • [80]Anguera MC, Ma W, Clift D, Namekawa S, Kelleher RJ 3rd, Lee JT: Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet 2011, 7:e1002248.
  • [81]von Kopylow K, Kirchhoff C, Jezek D, Schulze W, Feig C, Primig M, et al.: Screening for biomarkers of spermatogonia within the human testis: a whole genome approach. Hum Reprod 2010, 25:1104-12.
  • [82]Chen YT, Chiu R, Lee P, Beneck D, Jin B, Old LJ: Chromosome X-encoded cancer/testis antigens show distinctive expression patterns in developing gonads and in testicular seminoma. Hum Reprod 2011, 26:3232-43.
  • [83]Song HW, Anderson RA, Bayne RA, Gromoll J, Shimasaki S, Chang RJ, et al.: The RHOX homeobox gene cluster is selectively expressed in human oocytes and male germ cells. Hum Reprod 2013, 28:1635-46.
  • [84]Rolland AD, Lavigne R, Dauly C, Calvel P, Kervarrec C, Freour T, et al.: Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum Reprod 2013, 28:199-209.
  • [85]Brower JV, Lim CH, Jorgensen M, Oh SP, Terada N: Adenine nucleotide translocase 4 deficiency leads to early meiotic arrest of murine male germ cells. Reproduction 2009, 138:463-70.
  • [86]Nakada K, Sato A, Yoshida K, Morita T, Tanaka H, Inoue S, et al.: Mitochondria-related male infertility. Proc Natl Acad Sci U S A 2006, 103:15148-53.
  • [87]Grootegoed JA, Jansen R, van der Molen HJ: Effect of glucose on ATP dephosphorylation in rat spermatids. J Reprod Fertil 1986, 77:99-107.
  • [88]Essers J, Hendriks RW, Wesoly J, Beerens CE, Smit B, Hoeijmakers JH, et al.: Analysis of mouse Rad54 expression and its implications for homologous recombination. DNA Repair (Amst) 2002, 1:779-93.
  • [89]Peters AH, Plug AW, van Vugt MJ, de Boer P: A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res 1997, 5:66-8.
  • [90]Zwick MS, Hanson RE, Islam-Faridi MN, Stelly DM, Wing RA, Price HJ, et al.: A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 1997, 40:138-42.
  • [91]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-5.
  • [92]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-40.
  文献评价指标  
  下载次数:96次 浏览次数:40次