期刊论文详细信息
BMC Public Health
The use of a proactive dissemination strategy to optimize reach of an internet-delivered computer tailored lifestyle intervention
Liesbeth ADM van Osch2  Hein de Vries2  Loes HL Pouwels1  Daniela N Schulz2  Francine Schneider2 
[1] Regional Public Health Service / Southeast Brabant, Helmond, The Netherlands;CAPHRI / Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
关键词: Proactive dissemination;    User characteristics;    Lifestyle;    Computer tailoring;    Reach;    Online interventions;    Internet-delivered interventions;   
Others  :  1161961
DOI  :  10.1186/1471-2458-13-721
 received in 2012-08-06, accepted in 2013-07-23,  发布年份 2013
PDF
【 摘 要 】

Background

The use of reactive strategies to disseminate effective Internet-delivered lifestyle interventions restricts their level of reach within the target population. This stresses the need to invest in proactive strategies to offer these interventions to the target population. The present study used a proactive strategy to increase reach of an Internet-delivered multi component computer tailored intervention, by embedding the intervention in an existing online health monitoring system of the Regional Public Health Services in the Netherlands.

Methods

The research population consisted of Dutch adults who were invited to participate in the Adult Health Monitor (N = 96,388) offered by the Regional Public Health Services. This Monitor consisted of an online or a written questionnaire. A prospective design was used to determine levels of reach, by focusing on actual participation in the lifestyle intervention. Furthermore, adequacy of reach among the target group was assessed by composing detailed profiles of intervention users. Participants’ characteristics, like demographics, behavioral and mental health status and quality of life, were included in the model as predictors.

Results

A total of 41,155 (43%) people participated in the Adult Health Monitor, of which 41% (n = 16,940) filled out the online version. More than half of the online participants indicated their interest (n = 9169; 54%) in the computer tailored intervention and 5168 participants (31%) actually participated in the Internet-delivered computer tailored intervention. Males, older respondents and individuals with a higher educational degree were significantly more likely to participate in the intervention. Furthermore, results indicated that especially participants with a relatively healthier lifestyle and a healthy BMI were likely to participate.

Conclusions

With one out of three online Adult Health Monitor participants actually participating in the computer tailored lifestyle intervention, the employed proactive dissemination strategy succeeded in ensuring relatively high levels of reach. Reach among at-risk individuals (e.g. low socioeconomic status and unhealthy lifestyle) was modest. It is therefore essential to further optimize reach by putting additional effort into increasing interest in the lifestyle intervention among at-risk individuals and to encourage them to actually use the intervention.

Trial registration

Dutch Trial Register (NTR1786) and Medical Ethics Committee of Maastricht University and the University Hospital Maastricht (NL2723506809/MEC0903016).

【 授权许可】

   
2013 Schneider et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150413045519515.pdf 348KB PDF download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]World Health Organisation: WHO fact sheet. Geneva: World Health Organisation; 2011.
  • [2]RIVM: Volksgezondheid Toekomst Verkenning. Bilthoven, The Netherlands: Nationaal Kompas Volksgezondheid; 2012.
  • [3]De Vries H, Van’t Riet J, Spigt M, Metsemakers J, van den Akker M, Vermunt JK, Kremers S: Clusters of lifestyle behaviors. Prev Med 2008, 46(3):203-208.
  • [4]Strecher V, Wang C, Derry H, Wildenhaus K, Johnson C: Tailored interventions for multiple risk behaviors. Health Educ Res 2002, 17(5):619-626.
  • [5]Internet World Stats: Internet usage statistics: The internet big picture. The internet big picture; http://www.internetworldstats.com/stats.htm webcite
  • [6]Brug J, Oenema A, Kroeze W, Raat H: The internet and nutrition education: challenges and opportunities. Eur J Clin Nutr 2005, 59(Suppl 1):S130-S137. discussion S138-139
  • [7]Lustria ML, Cortese J, Noar SM, Glueckauf RL: Computer-tailored health interventions delivered over the web: review and analysis of key components. Patient Educ Couns 2009, 74(2):156-173.
  • [8]Ritterband LM, Gonder-Frederick LA, Cox DJ, Clifton AD, West RW, Borowitz S: Internet interventions: in review, in use and into the future. Prof Psychol Res Pr 2003, 34(5):527-534.
  • [9]Krebs P, Prochaska JO, Rossi JS: A meta-analysis of computer-tailored interventions for health behavior change. Prev Med 2010, 51(3–4):214-221.
  • [10]van den Berg MH, Schoones JW, Vliet Vlieland TP: Internet-based physical activity interventions: a systematic review of the literature. J Med Internet Res 2007, 9(3):e26.
  • [11]Vandelanotte C, Spathonis KM, Eakin EG, Owen N: Website-delivered physical activity interventions a review of the literature. Am J Prev Med 2007, 33(1):54-64.
  • [12]Neville LM, O’Hara B, Milat AJ: Computer-tailored dietary behaviour change interventions: a systematic review. Health Educ Res 2009, 24(4):699-720.
  • [13]Brug J, Glanz K, Van Assema P, Kok G, Van Breukelen GJ: The impact of computer-tailored feedback and iterative feedback on fat, fruit, and vegetable intake. Health Educ Behav 1998, 25(4):517-531.
  • [14]Borland R, Balmford J, Hunt D: The effectiveness of personally tailored computer-generated advice letters for smoking cessation. Addiction 2004, 99(3):369-377.
  • [15]Dijkstra A, De Vries H, Roijackers J: Long-term effectiveness of computer-generated tailored feedback in smoking cessation. Health Educ Res 1998, 13(2):207-214.
  • [16]Riper H, Kramer J, Smit F, Conijn B, Schippers G, Cuijpers P: Web-based self-help for problem drinkers: a pragmatic randomized trial. Addiction 2008, 103(2):218-227.
  • [17]White A, Kavanagh D, Stallma H, Klein B, Kay-Lambkin F, Proudfoot J, Drennan J, Connor J, Baker A, Hines E, et al.: Online alcohol interventions: a systematic review. J Med Internet Res 2010, 12(5):e62.
  • [18]Glasgow RE, Vogt TM, Boles SM: Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health 1999, 89(9):1322-1327.
  • [19]Eysenbach G: The law of attrition. J Med Internet Res 2005, 7(1):e11.
  • [20]Portnoy DB, Scott-Sheldon LA, Johnson BT, Carey MP: Computer-delivered interventions for health promotion and behavioral risk reduction: a meta-analysis of 75 randomized controlled trials, 1988–2007. Prev Med 2008, 47(1):3-16.
  • [21]Evers KE, Cummins CO, Prochaska JO, Prochaska JM: Online health behavior and disease management programs: are we ready for them? are they ready for us? J Med Internet Res 2005, 7(3):e27.
  • [22]Glasgow RE, Nelson CC, Kearney KA, Reid R, Ritzwoller DP, Strecher VJ, Couper MP, Green B, Wildenhaus K: Reach, engagement, and retention in an Internet-based weight loss program in a multi-site randomized controlled trial. J Med Internet Res 2007, 9(2):e11.
  • [23]Brouwer W, Oenema A, Crutzen R, De Nooijer J, De Vries N, Brug J: What makes people decide to visit and use an internet-delivered behavior-change intervention?: a qualitative study among adults. Health Educ 2009, 109(6):460-473.
  • [24]Prochaska JO, Velicer WF, Fava JL, Rossi JS, Tsoh JY: Evaluating a population-based recruitment approach and a stage-based expert system intervention for smoking cessation. Addict Behav 2001, 26(4):583-602.
  • [25]Prochaska J, Redding CA, Evers K: The transtheoretical model and stages of change. In Health Behavior and Health Education: Theory, Research, and Practice. 3rd edition. Edited by Glanz K. San Francisco: Jossey-Bass; 1997:99-120.
  • [26]De Vries H, Mudde A, Leijs I, Charlton A, Vartiainen E, Buijs G, Clemente MP, Storm H, Gonzalez Navarro A, Nebot M, et al.: The European smoking prevention framework approach (EFSA): an example of integral prevention. Health Educ Res 2003, 18(5):611-626.
  • [27]Ajzen A: The theory of planned behavior. Organ Behav Hum Decis Process 1991, 50:179-211.
  • [28]Velicer WF, Prochaska JO, Fava JL, Laforge RG, Rossi JS: Interactive versus noninteractive interventions and dose–response relationships for stage-matched smoking cessation programs in a managed care setting. Health Psychol 1999, 18:21-28.
  • [29]Schneider F, Van Osch L, Schulz DN, Kremers SP, De Vries H: The influence of user characteristics and a periodic email prompt on exposure to an internet-delivered computer-tailored lifestyle program. J Med Internet Res 2012, 14(2):e40.
  • [30]Lokale en Nationale Monitor Gezondheid. Nederland: GGD; http://www.monitorgezondheid.nl webcite
  • [31]Rogers E: Diffusion of Innovations. New York, NY: The free press; 1995.
  • [32]Schneider F, Van Osch LA, Kremers SP, Schulz DN, Van Adrichem MJ, De Vries H: Optimizing diffusion of an online computer tailored lifestyle program: a study protocol. BMC Publ Health 2011, 11(1):480. BioMed Central Full Text
  • [33]Schulz DN, Kremers SP, Van Osch LA, Schneider F, Van Adrichem MJ, De Vries H: Testing a Dutch web-based tailored lifestyle programme among adults: a study protocol. BMC Publ Health 2011, 11:108. BioMed Central Full Text
  • [34]Smeets T, Brug J, De Vries H: Effects of tailoring health messages on physical activity. Health Educ Res 2008, 23(3):402-413.
  • [35]Brug J, Steenhuis I, Van Assema P, Glanz K, De Vries H: Computer-tailored nutrition education: differences between two interventions. Health Educ Res 1999, 14(2):249-256.
  • [36]Poel F, Bolman C, Reubsaet A, De Vries H: Efficacy of a single computer tailored mail for smoking cessation: results after six months. Health Educ Res 2009, 24:930-940.
  • [37]Van Keulen HM, Mesters I, Ausems M, Van Breukelen G, Campbell M, Resnicow K, Brug J, De Vries H: Tailored print communication and telephone motivational interviewing are equally successful in improving multiple lifestyle behaviors in a randomized controlled trial. Ann Behav Med 2011, 41(1):104-118.
  • [38]Hildebrandt VH, Chorus AMJ: JH S: Trendrapport Bewegen en Gezondheid 2008–2009. Leiden: In. Edited by Leven TKv; 2010.
  • [39]Gezondheidsraad: In Richtlijnen geode voeding – achtergronddocument [Guidelines for good nutrition – background material]. Den Haag: Gezondheidsraad; 2006.
  • [40]Aanvaardbaar alcoholgebruik. http://www.alcoholinfo.nl/ webcite
  • [41]Kwaliteitsinstituut voor de Gezondheidszorg CBO: Richtlijn Behandeling van tabaksverslaving. In Directe treatment of tobacco addiction Edited by voor de Gezondheidszorg CBO K. 2004.
  • [42]Strecher VJ, McClure J, Alexander G, Chakraborty B, Nair V, Konkel J, Greene S, Couper M, Carlier C, Wiese C, et al.: The role of engagement in a tailored web-based smoking cessation program: randomized controlled trial. J Med Internet Res 2008, 10(5):e36.
  • [43]Kreuter M, Farrell D, Olevitch L, Brennan L: Tailoring Health Messages: Customizing Communication with Computer Technology. Mahwah, NJ: Erlbaum; 2000.
  • [44]De Vries H, Brug J: Computer-tailored interventions motivating people to adopt health promoting behaviours: introduction to a new approach. Patient Educ Couns 1999, 36(2):99-105.
  • [45]Wendel Vos GC, Schuit AJ, Saris WH, Kromhout D: Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol 2003, 56(12):1163-1169.
  • [46]Bogers R, Van Assema P, Kester A, Westerterp K, Dagnelie P: Reproducibility, validity, and responsiveness to change of a sort questionnaire for measuring fruit and vegetable intake. Am J Epidemiol 2004, 159:900-909.
  • [47]Van Assema P, Brug J, Ronda G, Steenhuis I, Oenema A: A short dutch questionnaire to measure fruit and vegetable intake: relative validity among adults and adolescents. Nutr Health 2002, 16(2):85-106.
  • [48]Lemmens P, Tan ES, Knibbe RA: Measuring quantity and frequency of drinking in a general population survey: a comparison of five indices. J Stud Alcohol 1992, 53(5):476-486.
  • [49]Kessler RC, Andrews G, Colpe LJ, Hiripi E, Mroczek DK, Normand SL, Walters EE, Zaslavsky AM: Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol Med 2002, 32(6):959-976.
  • [50]Andrews G, Slade T: Interpreting scores on the Kessler psychological distress scale (K10). Aust N Z J Public Health 2001, 25(6):494-497.
  • [51]Ware JE, Kosinski M, Keller SD: A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Medical Care 1996, 34(3):220-233.
  • [52]Jenkinson C, Layte R, Jenkinson D, Lawrence K, Petersen S, Paice C, Stradling J: A shorter form health survey: can the SF-12 replicate results from the SF-36 in longitudinal studies? J Public Health Med 1997, 19(2):179-186.
  • [53]Bennett GG, Glasgow RE: The delivery of public health interventions via the Internet: actualizing their potential. Annu Rev Public Health 2009, 30:273-292.
  • [54]Brouwer W, Oenema A, Raat H, Crutzen R, De Nooijer J, De Vries NK, Brug J: Characteristics of visitors and revisitors to an Internet-delivered computer-tailored lifestyle intervention implemented for use by the general public. Health Educ Res 2010, 25(4):585-595.
  • [55]Leslie E, Marshall AL, Owen N, Bauman A: Engagement and retention of participants in a physical activity website. Prev Med 2005, 40(1):54-59.
  • [56]Lorence D, Park H: Group disparities and health information: a study of online access for the underserved. Health Informatics J 2008, 14(1):29-38.
  • [57]Yang S, Lynch J, Schulenberg J, Roux AV, Raghunathan T: Emergence of socioeconomic inequalities in smoking and overweight and obesity in early adulthood: the national longitudinal study of adolescent health. Am J Public Health 2008, 98(3):468-477.
  • [58]Spittaels H, De Bourdeaudhuij I, Brug J, Vandelanotte C: Effectiveness of an online computer-tailored physical activity intervention in a real-life setting. Health Educ Res 2007, 22(3):385-396.
  • [59]Verheijden MW, Jans MP, Hildebrandt VH, Hopman-Rock M: Rates and determinants of repeated participation in a web-based behavior change program for healthy body weight and healthy lifestyle. J Med Internet Res 2007, 9(1):e1.
  • [60]GGD: Regionaal Kompas Volksgezondheid. http://www.regionaalkompas.nl/ webcite
  • [61]Centraal Bureau voor de Statistiek [Statistics Netherlands]: Onderzoek ICT gebruik van huishoudens [Survey ICT use by households]. http://statline.cbs.nl/statweb/ webcite
  • [62]Brouwer W, Kroeze W, Crutzen R, De Nooijer J, De Vries NK, Brug J, Oenema A: Which intervention characteristics are related to more exposure to internet-delivered healthy lifestyle promotion interventions? a systematic review. J Med Internet Res 2011, 13(1):e2.
  文献评价指标  
  下载次数:12次 浏览次数:11次