期刊论文详细信息
BMC Evolutionary Biology
Recurrent camouflaged invasions and dispersal of an Asian freshwater gastropod in tropical Africa
Christian Albrecht1  Oscar Wembo Ndeo3  Alidor Kankonda4  Jean-Papy Mongindo Etimosundja4  Catharina Clewing1  Bert Van Bocxlaer2 
[1] Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), Giessen, D-35392, Germany;Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, 10115, Germany;Department of Hydrobiology, Official University of Ruwenzori, Butembo, D. R. Congo;Department of Hydrobiology and Aquaculture, University of Kisangani, Kisangani, D. R. Congo
关键词: Feedback mechanisms;    Anthropogenic stressor;    Ecosystem change;    Biogeography;    Melanoides tuberculata;    Congo River;    Ancient Lakes Malawi and Tanganyika;    Morphology;    Phylogeny;   
Others  :  1158297
DOI  :  10.1186/s12862-015-0296-2
 received in 2015-01-22, accepted in 2015-01-27,  发布年份 2015
PDF
【 摘 要 】

Background

Non-indigenous taxa currently represent a large fraction of the species and biomass of freshwater ecosystems. The accumulation of invasive taxa in combination with other stressors in these ecosystems may alter the habitats to which native taxa are adapted, which could elicit evolutionary changes in native populations and their ecological interactions. Assessing ecological and evolutionary consequences of invasions simultaneously may therefore be the most effective approach to study taxa with complex invasion histories. Here we apply such an integrated approach to the cerithioid gastropod Melanoides tuberculata, a model system in invasion biology.

Results

Molecular phylogenetics and ancestral range reconstructions allowed us to identify several independent Asian invasions in Lakes Malawi and Tanganyika, the Congo River, Nigeria and Cameroon. Some invasive M. tuberculata populations display much variation in shell morphology, and overlap in morphospace with M. tuberculata populations native to Africa. Experiments confirmed great ecophenotyic plasticity in some invasive populations, which, in combination with the overlap in disparity with native populations, masks invaders and their dispersal through Africa. Finally, the results of geographic modeling indicate that cryptic M. tuberculata invasions occurred primarily in densely populated areas.

Conclusions

We reveal the continental nature of invasions of Asian M. tuberculata to Africa. Several of the affected ecosystems have high endemicity in Cerithioidea: Lake Tanganyika has an unparalleled diversity in freshwater cerithioids (>10 endemic genera) and the Congo Basin and Lake Malawi are home to the two largest endemic species clusters of Melanoides in Africa (~12 and ~8 species, respectively). Cerithioids perform ecologically important functions in the benthic ecosystems of African freshwaters, but invaders and ecosystem change pose risks to their native diversity. We draw suggestions for more effective conservation strategies from our integrated approach.

【 授权许可】

   
2015 Van Bocxlaer et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150408012747271.pdf 5357KB PDF download
Figure 6. 14KB Image download
Figure 5. 36KB Image download
Figure 4. 79KB Image download
Figure 3. 48KB Image download
Figure 2. 99KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Strayer DL: Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwat Biol 2010, 55(Suppl. 1):152-74.
  • [2]Rahel FJ: Homogenization of freshwater faunas. Annu Rev Ecol Syst 2002, 33:291-315.
  • [3]Lockwood JL, Hoopes MF, Marchetti MP: Invasion ecology. Blackwell Publishing Ltd, Malden; 2007.
  • [4]Pejchar L, Mooney HA: Invasive species, ecosystem services and human well-being. Trends Ecol Evol 2009, 24(9):497-504.
  • [5]Kolar CS, Lodge DM: Progress in invasion biology: predicting invaders. Trends Ecol Evol 2001, 16(4):199-204.
  • [6]Gherardi F, Gollasch S, Minchin D, Olenin S, Panov VE: Alien invertebrates and fish in European inland waters. In Handbook of alien species in Europe. Edited by Drake JA. Springer, Dordrecht; 2009:81-92.
  • [7]Barel CDN, Dorit R, Greenwood PH, Fryer G, Hughes N, Jackson PBN, et al.: Destruction of fisheries in Africa's lakes. Nature 1985, 315:19-20.
  • [8]Witte F, Goldschmidt T, Wanink J, van Oijen M, Goudswaard K, Witte-Maas E, et al.: The destruction of an endemic species flock: quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Environ Biol Fishes 1992, 34:1-28.
  • [9]Hecky RE, Mugidde R, Ramlal PS, Talbot MR, Kling GW: Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshwat Biol 2010, 55(Suppl. 1):19-42.
  • [10]Pringle RM: The origins of the Nile Perch in Lake Victoria. Bioscience 2005, 55:780-7.
  • [11]Donohue I, Petchey OL, Montoya JM, McNally L, Viana M, Healy K, et al.: On the dimensionality of ecological stability. Ecol Lett 2013, 16:421-9.
  • [12]Van Bocxlaer B, Albrecht C, Stauffer JR: Growing population and ecosystem change increase human schistosomiasis around Lake Malaŵi. Trends Parasitol 2014, 30(5):217-20.
  • [13]Herben T: Species pool size and invasibility of island communities: a null model of sampling effects. Ecol Lett 2005, 8(9):909-17.
  • [14]Davis MA: Biotic globalization: does competition from introduced species threaten biodiversity? Bioscience 2003, 53:481-9.
  • [15]Lambrinos JG: How interactions between ecology and evolution influence contemporary invasion dynamics. Ecology 2004, 85(8):2061-70.
  • [16]Shea K, Chesson P: Community ecology theory as a framework for biological invasions. Trends Ecol Evol 2002, 17(4):170-6.
  • [17]Facon B, Pointier J-P, Jarne P, Sarda V, David P: High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr Biol 2008, 18:363-7.
  • [18]Samadi S, Mavárez J, Pointier J-P, Delay B, Jarne P: Microsatellite and morphological analysis of population structure in the parthenogenetic freshwater snail Melanoides tuberculata: insights into the creation of clonal variability. Mol Ecol 1999, 8:1141-53.
  • [19]Pointier J-P: Conchological studies of Thiara (Melanoides) tuberculata (Mollusca: Gastropoda: Thiaridae) in the French West Indies. Walkerana 1989, 3:203-9.
  • [20]Facon B, Pointier J-P, Glaubrecht M, Poux C, Jarne P, David P: A molecular phylogeography approach to biological invasions of the New World by parthenogenetic thiarid snails. Mol Ecol 2003, 12:3027-39.
  • [21]Genner MJ, Michel E, Erpenbeck D, De Voogd N, Witte F, Pointier J-P: Camouflaged invasion of Lake Malawi by an Oriental gastropod. Mol Ecol 2004, 13:2135-41.
  • [22]Sørensen LVG, Jørgensen A, Kristensen TK: Molecular diversity and phylogenetic relationships of the gastropod genus Melanoides in Lake Malawi. Afr Zool 2005, 40(2):179-91.
  • [23]Genner MJ, Michel E, Todd JA: Resistance of an invasive gastropod to an indigenous trematode parasite in Lake Malawi. Biol Invasions 2008, 10:41-9.
  • [24]Van Bocxlaer B, Albrecht C. Ecosystem change and establishment of an invasive snail alter gastropod communities in long-lived Lake Malawi. Hydrobiologia. 2015;744:307–16.
  • [25]Pfenninger M, Weigand A, Bálint M, Klussmann-Kolb A: Misperceived invasion: the Lusitanian slug (Arion lusitanicus auct. non-Mabille or Arion vulgaris Moquin-Tandon 1855) is native to Central Europe. Evol Appl 2014, 7:702-13.
  • [26]Knop E, Reusser N: Jack-of-all-trades: phenotypic plasticity facilitates the invasion of an alien slug species. Proc R Soc B Biol Sci 2012, 279:4668-76.
  • [27]Gurdebeke PR, Van Bocxlaer B: Conchological differentiation in an ongoing radiation of Lanistes gastropods from ancient Lake Malawi: how adaptive is shell morphology? Geologica Belgica 2013, 16(1–2):118-9.
  • [28]Hauffe T, Schultheiß R, Van Bocxlaer B, Prömmel K, Albrecht C. Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa. Int J Earth Sci. 2014 (online early; doi 10.1007/s00531-014-1109-3)
  • [29]Amante C, Eakins BW: ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. Boulder, CO National Geophysical Data Center, NOAA, ᅟ; 2009.
  • [30]Danish Bilharziasis Laboratory. Guide de terrain des gastéropodes d'eau douce africains 5: Afrique centrale. Charlottenlund, Denmark: Danish Bilharziasis Laboratory; 1982.
  • [31]Brown DS: Freshwater snails of Africa and their medical importance. 2nd edition. Taylor and Francis, London; 1994.
  • [32]Van Bocxlaer B, Schultheiß R: Comparison of morphometric techniques for shapes with few homologous landmarks based on machine-learning approaches to biological discrimination. Paleobiology 2010, 36(3):497-515.
  • [33]Venables WN, Ripley BD: Modern applied statistics with S. 4th edition. Springer, New York; 2002.
  • [34]Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al. Vegan: Community Ecology Package. R package; version 2.0-10; 2013.
  • [35]R Development Core Team. R: A language and environment for statistical computing. Version 3.0.1. R Foundation for Statistical Computing; 2013.
  • [36]Wilke T, Davis GM, Qui DC, Spear RC: Extreme mitochondrial sequence diversity in the intermediate schistosomiasis host Oncomelania hupensis: another case of ancestral polymorphism? Malacologia 2006, 48:143-57.
  • [37]Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994, 3(5):294-9.
  • [38]Schultheiß R, Wilke T, Jørgensen A, Albrecht C: The birth of an endemic species flock: demographic history of the Bellamya group (Gastropoda, Viviparidae) in Lake Malawi. Biol J Linn Soc 2011, 102:130-43.
  • [39]Palumbi S, Martin A, Romano S, Mcmillian WO, Stice L, Grabowski G: The simple fool's guide to PCR. University of Hawaii, Honolulu; 1991.
  • [40]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windowns 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-8.
  • [41]Löytynoja A, Goldman N: An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A 2005, 102:10557-62.
  • [42]Xia X, Lemey P. Assessing substitution saturation with DAMBE. In: Lemey P, Salemi M, Vandamme A-M, editors. The phylogenetic handbook: a practical approach to DNA and protein phylogeny. 2nd ed. Cambridge: Cambridge University Press; 2009. p. 615-630.
  • [43]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25(7):1253-6.
  • [44]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [45]Kass RE, Raftery AE: Bayes factors. J Am Stat Assoc 1995, 90:773-95.
  • [46]Suchard MA, Weiss RE, Sinsheimer JS: Bayesian selection of continuous-time Markov chain evolutionary models. Mol Biol Evol 2001, 18:1001-13.
  • [47]Paradis E, Bolker B, Claude J, Cuong HS, Desper R, Durand B, et al. APE: analyses of phylogenetics and evolution. R package; version 3.1-4; 2014.
  • [48]Harmon L, Weir J, Brock C, Glor R, Challenger W, Hunt G, et al. Geiger: analysis of evolutionary diversification. R package; version 2.0.3; 2014.
  • [49]Ree RH, Smith SA: Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 2008, 57:4-14.
  • [50]Center for International Earth Science Information Network (CIESIN), Columbia University, United Nations Food and Agriculture Programme (FAO), Centro Internacional de Agricultura Tropical (CIAT). Gridded population of the World, Version 3 (GWP): Population Count Grid, Future Estimates. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC); 2005. http://sedac.ciesin.columbia.edu. Accessed 15 October 2014.
  • [51]Hijmans RJ. Raster: Geographic data analysis and modeling. R package version 2.2-31; 2014.
  • [52]Bivand R, Keitt T, Rowlingson B. rgdal: bindings for the Geospatial Data Abstraction Library. R package; version 0.9-1; 2014.
  • [53]Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: species distribution modeling. R package; version 0.9-3; 2013.
  • [54]Genner MJ, Todd JA, Michel E, Erpenbeck D, Jimoh A, Joyce DA, et al.: Amassing diversity in an ancient lake: evolution of a morphologically diverse parthenogenetic gastropod assemblage in Lake Malawi. Mol Ecol 2007, 16(3):517-30.
  • [55]Mandahl-Barth G: The freshwater Mollusca of Lake Malawi. Revue de Zoologie et de Botanique Africaines 1972, 86:257-89.
  • [56]Van Bocxlaer B, Salenbien W, Praet N, Verniers J: Stratigraphy and paleoenvironments of the early to middle Holocene Chipalamawamba Beds (Malawi Basin, Africa). Biogeosciences 2012, 9:4497-512.
  • [57]Schultheiß R, Van Bocxlaer B, Riedel F, von Rintelen T, Albrecht C: Disjunct distributions of freshwater snails testify to a central role of the Congo system in shaping biogeographic patterns in Africa. BMC Evol Biol 2014, 14:42. BioMed Central Full Text
  • [58]Glaubrecht M, Strong EE: Ancestry to an endemic radiation in Lake Tanganyika? Evolution of the viviparous gastropod Potadomoides Leloup, 1953 in the Congo River System (Caenogastropoda, Cerithioidea, Paludomidae). Biol J Linn Soc 2007, 92(2):367-401.
  • [59]Kullander SO, Roberts TR: Out of Lake Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River. Ichtyol Explor Freshwaters 2011, 22(4):355-76.
  • [60]Salzburger W, Mack T, Verheyen E, Meyer A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol Biol. 2005;5:17.
  • [61]Seegers L: The fishes of the Lake Rukwa drainage. Annales du Musée Royal de l'Afrique Centrale, Sciences Zoologiques 1996, 278:1-407.
  • [62]Cohen AS, Van Bocxlaer B, Todd JA, McGlue M, Michel E, Nkotagu HN, et al.: Quaternary ostracodes and molluscs from the Rukwa Basin (Tanzania) and their evolutionary and paleobiogeographic implications. Palaeogeogr, Palaeoclimatol, Palaeoecol 2013, 392:79-97.
  • [63]Wilson AB, Glaubrecht M, Meyer A: Ancient lakes as evolutionary reservoirs: evidence from the thalassoid gastropods of Lake Tanganyika. Proc R Soc B Biol Sci 2004, 271:529-36.
  • [64]Ndifon GT, Ukoli FMA: Ecology of freshwater snails in south-western Nigeria. I. Distribution and habitat preferences. Hydrobiologia 1989, 171(3):231-53.
  • [65]Alin SR, Cohen AS, Bills R, Gashagaza MM, Michel E, Tiercelin JJ, et al.: Effects of landscape disturbance on animal communities in Lake Tanganyika, East Africa. Conserv Biol 1999, 13:1017-33.
  • [66]Eggermont H, Verschuren D: Impact of soil erosion in disturbed tributary drainages on the benthic invertebrate fauna of Lake Tanganyika, East Africa. Biol Conserv 2003, 113:99-109.
  • [67]Cohen AS, Bills R, Cocquyt CZ, Caljon AG: The impact of sediment pollution on biodiversity in Lake Tanganyika. Conserv Biol 1993, 7:667-77.
  • [68]Donohue I, Verheyen E, Irvine K: In situ experiments on the effects of increased sediment loads on littoral rocky shore communities in Lake Tanganyika, East Africa. Freshwat Biol 2003, 48:1603-16.
  • [69]McIntyre PB, Michel E, France K, Rivers A, Hakizimana P, Cohen AS: Individual- and assemblage-level effects of anthropogenic sedimentation on snails in Lake Tanganyika. Conserv Biol 2005, 19(1):171-81.
  • [70]Otu MK, Ramlal P, Wilkinson P, Hall RI, Hecky RE: Paleolimnological evidence of the effects of recent cultural eutrophication during the last 200 years in Lake Malawi, East Africa. J Great Lakes Res 2011, 37:61-74.
  • [71]Pilsbry HA, Bequaert J: The aquatic molluscs of the Belgian Congo, with a geographical and ecological account of Congo malacology. Bull Am Mus Nat Hist N Y 1927, 53:69-602.
  • [72]Strong EE, Colgan DJ, Healy JM, Lydeard C, Ponder WF, Glaubrecht M: Phylogeny of the gastropod superfamily Cerithioidea using morphology and molecules. Zool J Linn Soc 2011, 162:43-89.
  • [73]Mooney HA, Cleland EE: The evolutionary impact of invasive species. Proc Natl Acad Sci U S A 2001, 98(10):5446-51.
  文献评价指标  
  下载次数:151次 浏览次数:37次