期刊论文详细信息
BMC Genomics
Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints
Brett A Kaufman4  F Brad Johnson5  Liliya A Yatsunyk7  Joana Damas1  Kajia Cao2  Jill E Kolesar4  Steven P Barrett7  Filipe Pereira6  Dawei W Dong3 
[1] Institute of Molecular Pathology and Immunology, University of Porto, Porto, PORTUGAL;Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA;Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, USA;Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA;Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA;Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, PORTUGAL;Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, USA
关键词: Nucleic acid structures;    Non-B DNA;    Mitochondrial genome instability;    Mitochondrial disease;    mtDNA deletions;    G-quadruplex;   
Others  :  1216272
DOI  :  10.1186/1471-2164-15-677
 received in 2014-04-11, accepted in 2014-08-04,  发布年份 2014
PDF
【 摘 要 】

Background

Mitochondrial DNA (mtDNA) deletions cause disease and accumulate during aging, yet our understanding of the molecular mechanisms underlying their formation remains rudimentary. Guanine-quadruplex (GQ) DNA structures are associated with nuclear DNA instability in cancer; recent evidence indicates they can also form in mitochondrial nucleic acids, suggesting that these non-B DNA structures could be associated with mtDNA deletions. Currently, the multiple types of GQ sequences and their association with human mtDNA stability are unknown.

Results

Here, we show an association between human mtDNA deletion breakpoint locations (sites where DNA ends rejoin after deletion of a section) and sequences with G-quadruplex forming potential (QFP), and establish the ability of selected sequences to form GQ in vitro. QFP contain four runs of either two or three consecutive guanines (2G and 3G, respectively), and we identified four types of QFP for subsequent analysis: intrastrand 2G, intrastrand 3G, duplex derived interstrand (ddi) 2G, and ddi 3G QFP sequences. We analyzed the position of each motif set relative to either 5' or 3' unique mtDNA deletion breakpoints, and found that intrastrand QFP sequences, but not ddi QFP sequences, showed significant association with mtDNA deletion breakpoint locations. Moreover, a large proportion of these QFP sequences occur at smaller distances to breakpoints relative to distribution-matched controls. The positive association of 2G QFP sequences persisted when breakpoints were divided into clinical subgroups. We tested in vitro GQ formation of representative mtDNA sequences containing these 2G QFP sequences and detected robust GQ structures by UV–VIS and CD spectroscopy. Notably, the most frequent deletion breakpoints, including those of the "common deletion", are bounded by 2G QFP sequence motifs.

Conclusions

The potential for GQ to influence mitochondrial genome stability supports a high-priority investigation of these structures and their regulation in normal and pathological mitochondrial biology. These findings emphasize the potential importance of helicases that subsequently resolve GQ to maintain the stability of the mitochondrial genome.

【 授权许可】

   
2014 Dong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629173954916.pdf 1574KB PDF download
Figure 7. 133KB Image download
Figure 6. 136KB Image download
Figure 5. 157KB Image download
Figure 4. 127KB Image download
Figure 3. 99KB Image download
Figure 2. 220KB Image download
Figure 1. 131KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Greaves LC, Reeve AK, Taylor RW, Turnbull DM: Mitochondrial DNA and disease. J Pathol 2011, 226:274-286.
  • [2]Schon EA, DiMauro S, Hirano M: Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 2012, 13:878-890.
  • [3]Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, Chinnery PF, Turnbull DM: Prevalence of mitochondrial DNA disease in adults. Ann Neurol 2008, 63:35-39.
  • [4]Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF: The epidemiology of mitochondrial disorders–past, present and future. Biochim Biophys Acta 2004, 1659:115-120.
  • [5]Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT, Taylor RW, Bindoff LA, Turnbull DM: The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 2000, 48:188-193.
  • [6]Hudson G, Deschauer M, Taylor RW, Hanna MG, Fialho D, Schaefer AM, He L-P, Blakely E, Turnbull DM, Chinnery PF: POLG1, C10ORF2, and ANT1 mutations are uncommon in sporadic progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Neurology 2006, 66:1439-1441.
  • [7]Spinazzola A, Zeviani M: Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk. J Intern Med 2009, 265:174-192.
  • [8]Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006, 38:515-517.
  • [9]Linnane AW, Marzuki S, Ozawa T, Tanaka M: Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1989, 1:642-645.
  • [10]Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM: Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol A Biol Sci Med Sci 2007, 62:235-245.
  • [11]Kraytsberg Y, Simon DK, Turnbull DM, Khrapko K: Do mtDNA deletions drive premature aging in mtDNA mutator mice? Aging Cell 2009, 8:502-506.
  • [12]Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S: A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 1989, 244:346-349.
  • [13]Mita S, Rizzuto R, Moraes CT, Shanske S, Arnaudo E, Fabrizi GM, Koga Y, DiMauro S, Schon EA: Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res 1990, 18:561-567.
  • [14]Samuels DC, Schon EA, Chinnery PF: Two direct repeats cause most human mtDNA deletions. Trends Genet 2004, 20:393-398.
  • [15]Lakshmanan LN, Gruber J, Halliwell B, Gunawan R: Role of direct repeat and stem-loop motifs in mtDNA deletions: cause or coincidence? PLoS One 2012, 7:e35271.
  • [16]Hou JH, Wei YH: The unusual structures of the hot-regions flanking large-scale deletions in human mitochondrial DNA. Biochem J 1996, 318(Pt 3):1065-1070.
  • [17]Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S: An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 1989, 339:309-311.
  • [18]Damas J, Carneiro J, Gonçalves J, Stewart JB, Samuels DC, Amorim A, Pereira F: Mitochondrial DNA deletions are associated with non-B DNA conformations. Nucleic Acids Res 2012, 40:7606-7621.
  • [19]Bochman ML, Paeschke K, Zakian VA: DNA secondary structures:stability and function ofG-quadruplex structures. Nat Rev Genet 2012, 13:770-780.
  • [20]Cao K, Ryvkin P, Johnson FB: Computational detection and analysis of sequences with duplex-derived interstrand G-quadruplex forming potential. Methods 2012, 57:3-10.
  • [21]Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou M-P, Foiani M, Nicolas A: G-quadruplex-induced instability during leading-strand replication. EMBO J 2011, 30:4033-4046.
  • [22]Ribeyre C, Lopes J, Boulé J-B, Piazza A, Guédin A, Zakian VA, Mergny J-L, Nicolas A: The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 2009, 5:e1000475.
  • [23]De S, Michor F: DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol 2011, 18:950-955.
  • [24]Capra JA, Paeschke K, Singh M, Zakian VA: G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput Biol 2010, 6:e1000861.
  • [25]Rawal P, Kummarasetti VBR, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S: Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res 2006, 16:644-655.
  • [26]Wanrooij PH, Uhler JP, Simonsson T, Falkenberg M, Gustafsson CM: G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc Natl Acad Sci U S A 2010, 107:16072-16077.
  • [27]Lee DY, Clayton DA: Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J Biol Chem 1996, 271:24262-24269.
  • [28]Wanrooij PH, Uhler JP, Shi Y, Westerlund F, Falkenberg M, Gustafsson CM: A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop. Nucleic Acids Res 2012, 40:10334-10344.
  • [29]Albring M, Attardi G: Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication. Proc Natl Acad Sci U S A 1977, 74:1348-1352.
  • [30]Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF: Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci U S A 2012, 109:6136-6141.
  • [31]Chang DD, Clayton DA: Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc Natl Acad Sci U S A 1985, 82:351-355.
  • [32]Oliveira PH, da Silva CL, Cabral JMS: An appraisal of human mitochondrial DNA instability: new insights into the role of non-canonical DNA structures and sequence motifs. PLoS One 2013, 8:e59907.
  • [33]Hazel P, Huppert J, Balasubramanian S, Neidle S: Loop-length-dependent folding of G-quadruplexes. J Am Chem Soc 2004, 126:16405-16415.
  • [34]Petraccone L, Erra E, Duro I, Esposito V, Randazzo A, Mayol L, Mattia CA, Barone G, Giancola C: Relative stability of quadruplexes containing different number of G-tetrads. Nucleosides Nucleotides Nucleic Acids 2005, 24:757-760.
  • [35]Risitano A, Fox KR: Influence of loop size on the stability of intramolecular DNA quadruplexes. Nucleic Acids Res 2004, 32:2598-2606.
  • [36]Kikin O, D’antonio L, Bagga PS: QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 2006, 34(Web Server issue):W676-W682.
  • [37]Markham NR, Zuker M: UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 2008, 453:3-31.
  • [38]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19:1639-1645.
  • [39]Bhattacharjee AJ, Ahluwalia K, Taylor S, Jin O, Nicoludis JM, Buscaglia R, Brad Chaires J, Kornfilt DJP, Marquardt DGS, Yatsunyk LA: Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin. Biochimie 2011, 93:1297-1309.
  • [40]Smith JS, Chen Q, Yatsunyk LA, Nicoludis JM, Garcia MS, Kranaster R, Balasubramanian S, Monchaud D, Teulade-Fichou M-P, Abramowitz L, Schultz DC, Johnson FB: Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat Struct Mol Biol 2011, 18:478-485.
  • [41]Huppert JL: Hunting G-quadruplexes. Biochimie 2008, 90:1140-1148.
  • [42]Yang J-N, Seluanov A, Gorbunova V: Mitochondrial inverted repeats strongly correlate with lifespan: mtDNA inversions and aging. PLoS One 2013, 8:e73318.
  • [43]Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF, Nakase H, Bonilla E, Werneck LC, Servidei S: Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Medi 1989, 320:1293-1299.
  • [44]Guo X, Popadin KY, Markuzon N, Orlov YL, Kraytsberg Y, Krishnan KJ, Zsurka G, Turnbull DM, Kunz WS, Khrapko K: Repeats, longevity and the sources of mtDNA deletions: evidence from ‘deletional spectra’. Trends Genet 2010, 26:340-343.
  • [45]Damas J, Samuels DC, Carneiro J, Amorim A, Pereira F: Mitochondrial DNA rearrangements in health and disease–a comprehensive study. Hum Mutat 2014, 35:1-14.
  • [46]Myers S, Freeman C, Auton A, Donnelly P, McVean G: A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet 2008, 40:1124-1129.
  • [47]Mergny J-L, Li J, Lacroix L, Amrane S, Chaires JB: Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res 2005, 33:e138.
  • [48]Paeschke K, Capra JA, Zakian VA: DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 2011, 145:678-691.
  • [49]Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA: Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 2013, 497:458-462.
  • [50]Kolesar JE, Wang CY, Taguchi YV, Chou S-H, Kaufman BA: Two-dimensional intact mitochondrial DNA agarose electrophoresis reveals the structural complexity of the mammalian mitochondrial genome. Nucleic Acids Res 2013, 41:e58-e58.
  • [51]Pohjoismäki JLO, Holmes JB, Wood SR, Yang M-Y, Yasukawa T, Reyes A, Bailey LJ, Cluett TJ, Goffart S, Rigby RE, Jackson AP, Spelbrink JN, Griffith JD, Crouch RJ, Jacobs HT, Holt IJ: Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid. J Mol Biol 2010, 397:1144-1155.
  • [52]Van Tuyle GC, Pavco PA: The rat liver mitochondrial DNA-protein complex: displaced single strands of replicative intermediates are protein coated. J Cell Biol 1985, 100:251-257.
  • [53]Kim N, Jinks-Robertson S: Transcription as a source of genome instability. Nat Rev Genet 2012, 13:204-214.
  • [54]Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM: What causes mitochondrial DNA deletions in human cells? Nat Genet 2008, 40:275-279.
  • [55]Srivastava S, Moraes CT: Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum Mol Genet 2005, 14:893-902.
  • [56]Fukui H, Moraes CT: Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet 2009, 18:1028-1036.
  • [57]Garone C, Rubio JC, Calvo SE, Naini A, Tanji K, DiMauro S, Mootha VK, Hirano M: MPV17 mutations causing adult-onset multisystemic disorder with multiple mitochondrial DNA DeletionsMPV17 mutations. Arch Neurol 2012, 69:1648-1651.
  • [58]Copeland WC: Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 2012, 47:64-74.
  • [59]Copeland WC: Inherited mitochondrial diseases of DNA replication. Annu Rev Med 2008, 59:131-146.
  • [60]Douarre C, Mergui X, Sidibe A, Gomez D, Alberti P, Mailliet P, Trentesaux C, Riou J-F: DNA damage signaling induced by the G-quadruplex ligand 12459 is modulated by PPM1D/WIP1 phosphatase. Nucleic Acids Res 2013, 41:3588-3599.
  • [61]Schwab RA, Nieminuszczy J, Shin-ya K, Niedzwiedz W: FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J Cell Biol 2013, 201:33-48.
  • [62]Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M, Wanrooij S, Garrido N, Comi G, Morandi L, Santoro L, Toscano A, Fabrizi GM, Somer H, Croxen R, Beeson D, Poulton J, Suomalainen A, Jacobs HT, Zeviani M, Larsson C: Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 2001, 28:223-231.
  • [63]Jemt E, Farge G, Backstrom S, Holmlund T, Gustafsson CM, Falkenberg M: The mitochondrial DNA helicase TWINKLE can assemble on a closed circular template and support initiation of DNA synthesis. Nucleic Acids Res 2011, 39:9238-9249.
  • [64]Croteau DL, Rossi ML, Canugovi C, Tian J, Sykora P, Ramamoorthy M, Wang ZM, Singh DK, Akbari M, Kasiviswanathan R, Copeland WC, Bohr VA: RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell 2012, 11:456-466.
  • [65]Kazak L, Reyes A, Duncan AL, Rorbach J, Wood SR, Brea-Calvo G, Gammage PA, Robinson AJ, Minczuk M, Holt IJ: Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Res 2013, 41:2354-2369.
  • [66]George T, Wen Q, Griffiths R, Ganesh A, Meuth M, Sanders CM: Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks. Nucleic Acids Res 2009, 37:6491-6502.
  • [67]Sanders CM: Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem J 2010, 430:119-128.
  文献评价指标  
  下载次数:0次 浏览次数:12次