| BMC Genetics | |
| Genetic polymorphisms of VIP variants in the Tajik ethnic group of northwest China | |
| Chao Chen1  Yali Cui1  Hong Wang1  Tingting Geng1  Xiaolan Li1  Zulfiya Yunus2  Tianbo Jin1  Jiayi Zhang1  | |
| [1] National Engineering Research Center for Miniaturized Detection Systems, Xi’an 710069, China;College of Life Sciences and Technology, Xinjiang University, Urumqi 830046, China | |
| 关键词: Ethnic difference; Tajik; Haplotype; Genetic polymorphism; Pharmacogenomics; | |
| Others : 1085558 DOI : 10.1186/s12863-014-0102-y |
|
| received in 2013-05-31, accepted in 2014-09-18, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Individual response to medications varies significantly among different populations, and great progress in understanding the molecular basis of drug action has been made in the past 50 years. The field of pharmacogenomics seeks to elucidate inherited differences in drug disposition and effects. While we know that different populations and ethnic groups are genetically heterogeneous, we have not found any pharmacogenomics information regarding minority groups, such as the Tajik ethnic group in northwest China.
Results
We genotyped 85 Very Important Pharmacogene (VIP) variants selected from PharmGKB in 100 unrelated, healthy Tajiks from the Xinjiang Uygur Autonomous Region and compared our data with HapMap data from four major populations around the world: Han Chinese (CHB), Japanese in Tokyo (JPT), Utah Residents with Northern and Western European Ancestry (CEU), and Yorubia in Ibadan, Nigeria (YRI). We found that Tajiks differed from CHB, JPT and YRI in 30, 32, and 32 of the selected VIP genotypes respectively (p < 0.005), while differences between Tajiks and CEU were found in only 6 of the genotypes (p < 0.005). Haplotype analysis also demonstrated differences between the Tajiks and the other four populations.
Conclusion
Our results contribute to the pharmacogenomics database of the Tajik ethnic group and provide a theoretical basis for safer drug administration that may be useful for diagnosing and treating disease in this population.
【 授权许可】
2014 Zhang et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150113174413569.pdf | 551KB | ||
| Figure 2. | 42KB | Image | |
| Figure 1. | 27KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Roden DM, Altman RB, Benowitz NL, Flockhart DA, Giacomini KM, Johnson JA, Krauss RM, McLeod HL, Ratain MJ, Relling MV, Ring HZ, Shuldiner AR, Weinshilboum RM, Weiss ST: Pharmacogenomics: challenges and opportunities. Ann Intern Med 2006, 145:749-757.
- [2]Weinshilboum R: Inheritance and drug response. N Engl J Med 2003, 348:529-537.
- [3]Evans WE, McLeod HL: Pharmacogenomics–drug disposition, drug targets, and side effects. N Engl J Med 2003, 348:538-549.
- [4]Evans WE, Relling MV: Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999, 286:487-491.
- [5]Sangkuhl K, Berlin DS, Altman RB, Klein TE: PharmGKB: understanding the effects of individual genetic variants. Drug Metab Rev 2008, 40:539-551.
- [6]Gabriel S, Ziaugra L, Tabbaa D: SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 2009, Chapter 2:Unit 2 12.
- [7]Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, Wang M, Feng W, Zander T, MacConaill L, Lee JC, Nicoletti R, Hatton C, Goyette M, Girard L, Majmudar K, Ziaugra L, Wong KK, Gabriel S, Beroukhim R, Peyton M, Barretina J, Dutt A, Emery C, Greulich H, Shah K, Sasaki H, Gazdar A, Minna J, Armstrong SA, et al.: High-throughput oncogene mutation profiling in human cancer. Nat Genet 2007, 39:347-351.
- [8]Song MK, Lin FC, Ward SE, Fine JP: Composite variables: when and how. Nurs Res 2012, 62:45-49.
- [9]Adamec C: Example of the use of the nonparametric test. Test X2 for comparison of 2 independent examples. Cesk Zdrav 1964, 12:613-619.
- [10]Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21:263-265.
- [11]Shi YY, He L: SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 2005, 15:97-98.
- [12]Hawley ME, Kidd KK: HAPLO: a program using the EM algorithm to estimate the frequencies of multi-site haplotypes. J Hered 1995, 86:409-411.
- [13]Zand N, Tajik N, Moghaddam AS, Milanian I: Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Iranian population. Clin Exp Pharmacol Physiol 2007, 34:102-105.
- [14]Hama T, Norizoe C, Suga H, Mimura T, Kato T, Moriyama H, Urashima M: Prognostic significance of vitamin D receptor polymorphisms in head and neck squamous cell carcinoma. PLoS One 2011, 6:e29634.
- [15]Raimondi S, Johansson H, Maisonneuve P, Gandini S: Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis 2009, 30:1170-1180.
- [16]Gandini S, Raimondi S, Gnagnarella P, Dore JF, Maisonneuve P, Testori A: Vitamin D and skin cancer: a meta-analysis. Eur J Cancer 2009, 45:634-641.
- [17]Gianfagna F, De Feo E, van Duijn CM, Ricciardi G, Boccia S: A systematic review of meta-analyses on gene polymorphisms and gastric cancer risk. Curr Genomics 2008, 9:361-374.
- [18]Li D, Zhao H, Gelernter J: Strong association of the alcohol dehydrogenase 1B gene (ADH1B) with alcohol dependence and alcohol-induced medical diseases. Biol Psychiatry 2011, 70:504-512.
- [19]McKay JD, Truong T, Gaborieau V, Chabrier A, Chuang SC, Byrnes G, Zaridze D, Shangina O, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Bucur A, Bencko V, Holcatova I, Janout V, Foretova L, Lagiou P, Trichopoulos D, Benhamou S, Bouchardy C, Ahrens W, Merletti F, Richiardi L, Talamini R, Barzan L, Kjaerheim K, Macfarlane GJ, Macfarlane TV, Simonato L, et al.: A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium. PLoS Genet 2011, 7:e1001333.
- [20]Macgregor S, Lind PA, Bucholz KK, Hansell NK, Madden PA, Richter MM, Montgomery GW, Martin NG, Heath AC, Whitfield JB: Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: an integrated analysis. Hum Mol Genet 2009, 18:580-593.
- [21]Tolstrup JS, Nordestgaard BG, Rasmussen S, Tybjaerg-Hansen A, Gronbaek M: Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes. Pharmacogenomics J 2008, 8:220-227.
- [22]Zuccolo L, Fitz-Simon N, Gray R, Ring SM, Sayal K, Smith GD, Lewis SJ: A non-synonymous variant in ADH1B is strongly associated with prenatal alcohol use in a European sample of pregnant women. Hum Mol Genet 2009, 18:4457-4466.
- [23]Luo X, Kranzler HR, Zuo L, Wang S, Schork NJ, Gelernter J: Diplotype trend regression analysis of the ADH gene cluster and the ALDH2 gene: multiple significant associations with alcohol dependence. Am J Hum Genet 2006, 78:973-987.
- [24]Hashibe M, McKay JD, Curado MP, Oliveira JC, Koifman S, Koifman R, Zaridze D, Shangina O, Wünsch-Filho V, Eluf-Neto J, Levi JE, Matos E, Lagiou P, Lagiou A, Benhamou S, Bouchardy C, Szeszenia-Dabrowska N, Menezes A, Dall'Agnol MM, Merletti F, Richiardi L, Fernandez L, Lence J, Talamini R, Barzan L, Mates D, Mates IN, Kjaerheim K, Macfarlane GJ, Macfarlane TV, et al.: Multiple ADH genes are associated with upper aerodigestive cancers. Nat Genet 2008, 40:707-709.
- [25]Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR: Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004, 75:807-821.
- [26]Pap D, Gonda X, Molnar E, Lazary J, Benko A, Downey D, Thomas E, Chase D, Toth ZG, Mekli K, Platt H, Payton A, Elliott R, Anderson IM, Deakin JF, Bagdy G, Juhasz G: Genetic variants in the catechol-o-methyltransferase gene are associated with impulsivity and executive function: Relevance for major depression. Am J Med Genet B Neuropsychiatr Genet 2012, 159B:928-940.
- [27]Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R, Weinberger DR, Berman KF: Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 2005, 8:594-596.
- [28]Bilder RM, Volavka J, Lachman HM, Grace AA: The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 2004, 29:1943-1961.
- [29]Tunbridge EM, Harrison PJ, Weinberger DR: Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 2006, 60:141-151.
- [30]Lanni C, Garbin G, Lisa A, Biundo F, Ranzenigo A, Sinforiani E, Cuzzoni G, Govoni S, Ranzani GN, Racchi M: Influence of COMT Val158Met polymorphism on Alzheimer’s disease and mild cognitive impairment in Italian patients. J Alzheimers Dis 2012, 32:919-926.
- [31]Tang W, Schwienbacher C, Lopez LM, Ben-Shlomo Y, Oudot-Mellakh T, Johnson AD, Samani NJ, Basu S, Gögele M, Davies G, Lowe GD, Tregouet DA, Tan A, Pankow JS, Tenesa A, Levy D, Volpato CB, Rumley A, Gow AJ, Minelli C, Yarnell JW, Porteous DJ, Starr JM, Gallacher J, Boerwinkle E, Visscher PM, Pramstaller PP, Cushman M, Emilsson V, Plump AS, et al.: Genetic associations for activated partial thromboplastin time and prothrombin time, their gene expression profiles, and risk of coronary artery disease. Am J Hum Genet 2012, 91:152-162.
- [32]Rieck M, Schumacher-Schuh AF, Altmann V, Francisconi CL, Fagundes PT, Monte TL, Callegari-Jacques SM, Rieder CR, Hutz MH: DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients. Pharmacogenomics 2012, 13:1701-1710.
- [33]Heyer E, Balaresque P, Jobling MA, Quintana-Murci L, Chaix R, Segurel L, Aldashev A, Hegay T: Genetic diversity and the emergence of ethnic groups in Central Asia. BMC Genet 2009, 10:49. BioMed Central Full Text
PDF