期刊论文详细信息
BMC Microbiology
Heterologous expression and processing of the flavescence dorée phytoplasma variable membrane protein VmpA in Spiroplasma citri
Xavier Foissac2  Sylvie Malembic-Maher2  Nathalie Arricau-Bouvery2  Delphine Desqué2  Sybille Duret2  Brigitte Batailler1  Laure Béven2  Joël Renaudin2 
[1] INSERM, Bordeaux Imaging Center, Bordeaux, US 004, France;Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
关键词: Phytoplasma effector;    Protein secretion;    Surface expression;    Spiroplasma citri;    Variable membrane protein;    Flavescence dorée;    Phytoplasma;   
Others  :  1206336
DOI  :  10.1186/s12866-015-0417-5
 received in 2014-12-10, accepted in 2015-03-18,  发布年份 2015
PDF
【 摘 要 】

Background

Flavescence dorée (FD) of grapevine is a phloem bacterial disease that threatens European vineyards. The disease is associated with a non-cultivable mollicute, a phytoplasma that is transmitted by the grapevine leafhopper Scaphoideus titanus in a persistent, propagative manner. The specificity of insect transmission is presumably mediated through interactions between the host tissues and phytoplasma surface proteins comprising the so-called variable membrane proteins (Vmps). Plant spiroplasmas and phytoplasmas share the same ecological niches, the phloem sieve elements of host plants and the hemocoel of insect vectors. Unlike phytoplasmas, however, spiroplasmas, and Spiroplasma citri in particular, can be grown in cell-free media and genetically engineered. As a new approach for studying phytoplasmas-insect cell interactions, we sought to mimic phytoplasmas through the construction of recombinant spiroplasmas exhibiting FD phytoplasma Vmps at the cell surface.

Results

Here, we report the expression of the FD phytoplasma VmpA in S. citri. Transformation of S. citri with plasmid vectors in which the vmpA coding sequence was under the control of the S. citri tuf gene promoter resulted in higher accumulation of VmpA than with the native promoter. Expression of VmpA at the spiroplasma surface was achieved by fusing the vmpA coding sequence to the signal peptide sequence of the S. citri adhesin ScARP3d, as revealed by direct colony immunoblotting and immunogold labelling electron microscopy. Anchoring of VmpA to the spiroplasma membrane was further demonstrated by Triton X-114 protein partitioning and Western immunoblotting. Using the same strategy, the secretion of free, functionally active β-lactamase (used as a model protein) into the culture medium by recombinant spiroplasmas was achieved.

Conclusions

Construction of recombinant spiroplasmas harbouring the FD phytoplasma variable membrane protein VmpA at their surface was achieved, which provides a new biological approach for studying interactions of phytoplasma surface proteins with host cells. Likewise, the secretion of functional β-lactamase by recombinant spiroplasmas established the considerable promise of the S. citri expression system for delivering phytoplasma effector proteins into host cells.

【 授权许可】

   
2015 Renaudin et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150528020035484.pdf 1413KB PDF download
Figure 6. 60KB Image download
Figure 5. 22KB Image download
Figure 4. 70KB Image download
Figure 3. 8KB Image download
Figure 2. 15KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Constable FE. Phytoplasma epidemiology: grapevines as a model. In: Phytoplasmas: genomes plant hosts and vectors. Weintraub PG, Jones P, editors. CAB International, Oxford, UK; 2010: p.188-212.
  • [2]Foissac X, Maixner M. Spread of grapevine phytoplasma diseases in Europe. Phytopathogenic Mollicutes. 2013; 3(1):47-50.
  • [3]Lee IM, Davis RE, Gundersen-Rindal DE. Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol. 2000; 54:221-55.
  • [4]Seemüller E, Garnier M, Schneider B. Mycoplasmas of plants and insects. In: Molecular Biology and Pathogenicity of Mycoplasmas. Razin S, Herrmann R, editors. Kluwer Academic/Plenum, New York; 2002: p.91-116.
  • [5]Weintraub PG, Beanland L. Insect Vectors of Phytoplasmas. Annu Rev Entomol. 2006; 51:91-111.
  • [6]Oshima K, Kakizawa S, Nishigawa H, Jung HY, Wei W, Suzuki S et al.. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet. 2004; 36(1):27-9.
  • [7]Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM et al.. The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics. 2008; 9:306. BioMed Central Full Text
  • [8]Tran-Nguyen LT, Kube M, Schneider B, Reinhardt R, Gibb KS. Comparative genome analysis of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and “Ca. Phytoplasma asteris” Strains OY-M and AY-WB. J Bacteriol. 2008; 190(11):3979-91.
  • [9]Hogenhout SA, Music MS. Phytoplasma genomics, from sequencing to comparative and functional genomics. What have we learnt? In: Phytoplasmas: genomes plant hosts and vectors. Weintraub PG, Jones P, editors. CAB International, Oxford, UK; 2010: p.19-36.
  • [10]Kakizawa S, Oshima K, Namba S. Functional genomics of phytoplasmas. In: Phytoplasmas: genomes, plant hosts and vectors. Weintraub PG, Jones P, editors. CAB International, Oxford, UK; 2010: p.37-50.
  • [11]Hogenhout SA, Oshima K, Ammar E-D, Kakizawa S, Kingdom HN, Namba S. Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol. 2008; 9(4):403-23.
  • [12]Strauss E. Microbiology. Phytoplasma research begins to bloom. Science. 2009; 325(5939):388-90.
  • [13]Sugio A, Hogenhout SA. The genome biology of phytoplasma: modulators of plants and insects. Curr Opin Microbiol. 2012; 15(3):247-54.
  • [14]Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung H, Yamaji Y et al.. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci U S A. 2006; 103(11):4252-7.
  • [15]Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachi C. The major antigenic membrane protein of “Candidatus Phytoplasma asteris” selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One. 2011; 6(7):e22571.
  • [16]Boonrod K, Munteanu B, Jarausch B, Jarausch W, Krczal G. An immunodominant membrane protein (Imp) of ‘Candidatus Phytoplasma mali’ binds to plant actin. Mol Plant-Microbe Interact. 2012; 25(7):889-95.
  • [17]Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M et al.. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A. 2009; 106(15):6416-21.
  • [18]MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Toth R et al.. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol. 2011; 157(2):831-41.
  • [19]Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci U S A. 2011; 108(48):E1254-63.
  • [20]Sugio A, Maclean AM, Hogenhout SA. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol. 2014; 202(3):838-48.
  • [21]Carle P, Malembic-Maher S, Arricau-Bouvery N, Desqué D, Eveillard S, Carrère S et al.. Flavescence dorée’ phytoplasma genome: a metabolism. Bull Insect. 2011; 64 Supplement:S13-4.
  • [22]Cimerman A, Pacifico D, Salar P, Marzachi C, Foissac X. Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the stolbur phytoplasma. Appl Environ Microbiol. 2009; 75(9):2951-7.
  • [23]Malembic-Maher S, Desqué D, Fabre A, Carle P, Johannesen J, Foissac X: Insect vector-specific diversification of variable membrane proteins (VMP) of stolbur and flavescence dorée phytoplasmas. Abstract # 21. In: 18th International Congress of the International Organization for Mycoplasmology. Chianciano Terme, Italy; 2010.
  • [24]Fleury B, Bergonier D, Berthelot X, Peterhans E, Frey J, Vilei EM. Characterization of P40, a cytadhesin of Mycoplasma agalactiae. Infect Immun. 2002; 70(10):5612-21.
  • [25]Nussbaum S, Lysnyansky I, Sachse K, Levisohn S, Yogev D. Extended repertoire of genes encoding variable surface lipoproteins in Mycoplasma bovis strains. Infect Immun. 2002; 70(4):2220-5.
  • [26]Béven L, Duret S, Batailler B, Dubrana MP, Saillard C, Renaudin J et al.. The Repetitive Domain of ScARP3d Triggers Entry of Spiroplasma citri into Cultured Cells of the Vector Circulifer haematoceps. PLoS One. 2012; 7(10):e48606.
  • [27]Desqué D, Malembic-Maher S, Foissac X: VMP-A is an antigenic membrane protein of flavescence dorée phytoplasma and binds to leafhopper vector proteins. Abstract #265. In: 19th International Congress of the International Organization for Mycoplasmology. Toulouse, France; 2012.
  • [28]Saglio P, Lhospital M, Laflèche D, Dupont G, Bové JM, Tully JG et al.. Spiroplasma citri gen. and sp. nov.: a mycoplasma-like organism associated with stubborn disease of citrus. Int J Syst Bacteriol. 1973; 23(3):191-204.
  • [29]Renaudin J, Breton M, Citti C. Molecular genetic tools for mollicutes. In: Mollicutes: molecular biology and pathogenesis. Browning G, Citti C, editors. Horizon scientific press, Norwich UK; 2014: p.55-76.
  • [30]Breton M, Duret S, Danet JL, Dubrana MP, Renaudin J. Sequences essential for transmission of Spiroplasma citri by its leafhopper vector, Circulifer haematoceps, revealed by plasmid curing and replacement based on incompatibility. Appl Environ Microbiol. 2010; 76(10):3198-205.
  • [31]Duret S, Batailler B, Dubrana MP, Saillard C, Renaudin J, Beven L et al.. Invasion of insect cells by Spiroplasma citri involves spiralin relocalization and lectin/glycoconjugate-type interactions. Cell Microbiol. 2014; 16(7):1119-32.
  • [32]Breton M, Duret S, Arricau-Bouvery N, Béven L, Renaudin J. Characterizing the replication and stability regions of Spiroplasma citri plasmids identifies a novel replication protein and expands the genetic toolbox for plant-pathogenic spiroplasmas. Microbiology. 2008; 154:3232-44.
  • [33]Bové JM, Foissac X, Saillard C. Spiralins. In: Mycoplasma Cell Membrane. Rottem S, Kahane I, editors. Plenum Press, New York; 1993: p.203-23.
  • [34]Renaudin J, Marais A, Verdin E, Duret S, Foissac X, Laigret F et al.. Integrative and free Spiroplasma citri oriC plasmids: expression of the Spiroplasma phoeniceum spiralin in Spiroplasma citri. J Bacteriol. 1995; 177:2870-7.
  • [35]Caudwell A, Kuszala C, Bachelier JC, Larrue J. Transmission de la Flavescence dorée de la vigne aux plantes herbacées par l’allongement du temps d’utilisation de la cicadelle Scaphoideus littoralis Ball et l’étude de sa survie sur un grand nombre d’espèces végétales. Ann Phytopathol. 1970; 2:415-28.
  • [36]Caudwell A, Kuszala C, Larrue J, Bachelier JC. Transmission de la Flavescence dorée de la fève à la fève par des cicadelles des genres Euscelis et Euscelidius. Intervention possible de ces insectes dans l’épidémiologie du Bois noir en Bourgogne. Ann Phytopathol. 1972; 1572(Hors série):181-9.
  • [37]Vignault JC, Bové JM, Saillard C, Vogel R, Farro A, Venegas L et al.. Mise en culture de spiroplasmes à partir de matériel végétal et d’insectes provenant de pays circum méditerranéens et du Proche Orient. C R Acad Sci Ser III. 1980; 290:775-80.
  • [38]Saillard C, Carle P, Duret-Nurbel S, Henri R, Killiny N, Carrère S et al.. The abundant extrachromosomal content of Spiroplasma citri strain GII3-3X. BMC Genomics. 2008; 9:195-207. BioMed Central Full Text
  • [39]Hosseini Pour A. Determination of some molecular and cellular characteristics of Spiroplasma citri, the causal agent of citrus stubborn disease in Kerman, Fars and Mazadaran provinces. Tarbiat Modares University, Tehran; 2000.
  • [40]Berho N, Duret S, Renaudin J. Absence of plasmids encoding adhesion-related proteins in non insect-transmissible strains of Spiroplasma citri. Microbiology. 2006; 152(3):873-86.
  • [41]Tully JG, Whitcomb RF, Clark HF, Williamson DL. Pathogenic mycoplasma: cultivation and vertebrate pathogenicity of a new spiroplasma. Science. 1977; 195:892-4.
  • [42]Stamburski C, Renaudin J, Bové JM. First step toward a virus-derived vector for gene cloning and expression in spiroplasmas, organisms which read UGA as a tryptophan codon - Synthesis of chloramphenicol acetyltransferase in Spiroplasma citri. J Bacteriol. 1991; 173(7):2225-30.
  • [43]Angelini E, Clair D, Borgo M, Bertaccini A, Boudon-Padieu E. Flavescence dorée in France and Italy - Occurrence of closely related phytoplasma isolates and their near relationships to Palatinate grapevine yellows and an alder yellows phytoplasma. Vitis. 2001; 40(2):79-86.
  • [44]Duret S, André A, Renaudin J. Specific gene targeting in Spiroplasma citri: improved vectors and production of unmarked mutations using site-specific recombination. Microbiology. 2005; 151:2793-803.
  • [45]Duret S, Berho N, Danet JL, Garnier M, Renaudin J. Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps. Appl Environ Microbiol. 2003; 69(10):6225-34.
  • [46]Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981; 256(4):1604-7.
  • [47]Truchetet ME, Béven L, Renaudin H, Douchet I, Ferandon C, Charron A et al.. Potential role of Mycoplasma hominis in interleukin (IL)-17-producing CD4+ T-cell generation via induction of IL-23 secretion by human dendritic cells. J Infect Dis. 2011; 204(11):1796-805.
  • [48]Kim EB, da Piao C, Son JS, Choi YJ. Cloning and characterization of a novel tuf promoter from Lactococcus lactis subsp. lactis IL1403. Curr Microbiol. 2009; 59(4):425-31.
  • [49]Kavaliauskas D, Nissen P, Knudsen CR. The busiest of all ribosomal assistants: elongation factor Tu. Biochemistry. 2012; 51(13):2642-51.
  • [50]Berg M, Melcher U, Fletcher J. Characterization of Spiroplasma citri adhesion related protein SARP1, which contains a domain of a novel family designated sarpin. Gene. 2001; 275:57-64.
  • [51]Carle P, Saillard C, Carrere N, Carrere S, Duret S, Eveillard S et al.. Partial chromosome sequence of Spiroplasma citri reveals extensive viral invasion and important gene decay. Appl Environ Microbiol. 2010; 76(11):3420-3246.
  • [52]Bai X, Correa VR, Toruno TY, el Ammar D, Kamoun S, Hogenhout SA. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol Plant Microbe Interact. 2009; 22(1):18-30.
  • [53]Economou A. Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol. 1999; 7(8):315-20.
  • [54]Yu J, Wayadande AC, Fletcher J. Spiroplasma citri surface protein P89 implicated in adhesion to cells of the vector Circulifer tenellus. Phytopathology. 2000; 90(7):716-22.
  • [55]Berg M, Davies DL, Clark MF, Vetten HJ, Maier G, Marcone C et al.. Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplasma, and expression and characterization of the gene product. Microbiology. 1999; 145:1937-43.
  • [56]Blomquist CL, Barbara DJ, Davies DL, Clark MF, Kirkpatrick BC. An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology. 2001; 147:571-80.
  • [57]Kakizawa S, Oshima K, Nishigawa H, Jung HY, Wei W, Suzuki S et al.. Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology. 2004; 150:135-42.
  • [58]Burnett TA, Dinkla K, Rohde M, Chhatwal GS, Uphoff C, Srivastava M et al.. P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae: defined domains of P159 bind heparin and promote adherence to eukaryote cells. Mol Microbiol. 2006; 60(3):669-86.
  • [59]Chopra-Dewasthaly R, Citti C, Glew MD, Zimmermann M, Rosengarten R, Jechlinger W. Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-frequency Vpma antigenic variation. Mol Microbiol. 2008; 67(6):1196-210.
  • [60]Neriya Y, Sugawara K, Maejima K, Hashimoto M, Komatsu K, Minato N et al.. Cloning, expression analysis, and sequence diversity of genes encoding two different immunodominant membrane proteins in poinsettia branch-inducing phytoplasma (PoiBI). FEMS Microbiol Lett. 2011; 324(1):38-47.
  • [61]Mouchès C, Candresse T, Barroso G, Saillard C, Wroblewski H, Bové JM. Gene for spiralin, the major membrane-protein of the helical mollicute Spiroplasma citri - Cloning and expression in Escherichia coli. J Bacteriol. 1985; 164(3):1094-9.
  • [62]Jarhede TK, Le Hénaff M, Wieslander A. Expression of foreign genes and selection of promoters sequences in Acholeplasma laidlawii. Microbiology. 1995; 141:2071-9.
  • [63]Janis C, Lartigue C, Frey J, Wroblewski H, Thiaucourt F, Blanchard A et al.. Versatile use of oriC plasmids for functional genomics of Mycoplasma capricolum subsp. capricolum. Appl Environ Microbiol. 2005; 71(6):2888-93.
  • [64]Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D et al.. A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol. 1989; 171:6455-67.
  • [65]Gasparich GE, Whitcomb RF, Dodge D, French FE, Glass J, Williamson DL. The genus Spiroplasma and its non-helical descendants: phylogenetic classification, correlation with phenotype and roots of the Mycoplasma mycoides clade. Int J Syst Evol Microbiol. 2004; 54:893-918.
  • [66]Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol. 2011; 49:175-95.
  • [67]Sugawara K, Honma Y, Komatsu K, Himeno M, Oshima K, Namba S. The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiol. 2013; 162(4):2005-14.
  • [68]Markham PG. Spiroplasmas in leafhoppers: a review. Yale J Biol Med. 1983; 56:745-51.
  文献评价指标  
  下载次数:35次 浏览次数:15次