期刊论文详细信息
BMC Evolutionary Biology
Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution
Mei Sun3  Norman C Duke2  Eugenia YY Lo1 
[1] Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA 92697, USA;Trop WATER, James Cook University, Townsville, QLD, Australia;School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
关键词: Vicariance;    Rhizophora;    Phylogeography;    Mangroves;    Long-distance dispersal;    Nuclear markers;    Indo-west pacific;    Divergence time;    Chloroplast DNA;    Atlantic-east pacific;   
Others  :  856731
DOI  :  10.1186/1471-2148-14-83
 received in 2013-11-19, accepted in 2014-04-04,  发布年份 2014
PDF
【 摘 要 】

Background

Mangroves are key components of coastal ecosystems in tropical and subtropical regions worldwide. However, the patterns and mechanisms of modern distribution of mangroves are still not well understood. Historical vicariance and dispersal are two hypothetic biogeographic processes in shaping the patterns of present-day species distributions. Here we investigate evolutionary biogeography of mangroves in the Indo-West Pacific (IWP) and western Atlantic-East Pacific (AEP) regions using a large sample of populations of Rhizophora (the most representative mangrove genus) and a combination of chloroplast and nuclear DNA sequences and genome-wide ISSR markers.

Results

Our comparative analyses of biogeographic patterns amongst Rhizophora taxa worldwide support the hypothesis that ancient dispersals along the Tethys Seaway and subsequent vicariant events that divided the IWP and AEP lineages resulted in the major disjunctions. We dated the deep split between the Old and New World lineages to early Eocene based on fossil calibration and geological and tectonic changes. Our data also provide evidence for other vicariant processes within the Indo-West Pacific region in separating conspecific lineages of SE Asia and Australia-Pacific at the Oligocene-Miocene boundary. Close genetic affinities exist between extant Fijian and American lineages; East African and Australian lineages; and Australian and Pacific lineages; indicating relatively more recent oceanic long-distance dispersal events.

Conclusions

Our study demonstrates that neither vicariance nor dispersal alone could explain the observed global occurrences of Rhizophora, but a combination of vicariant events and oceanic long-distance dispersals can account for historical diversification and present-day biogeographic patterns of mangroves.

【 授权许可】

   
2014 Lo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723035930189.pdf 2737KB PDF download
138KB Image download
62KB Image download
57KB Image download
【 图 表 】

【 参考文献 】
  • [1]Tomlinson PB: The Botany of Mangroves. Cambridge: Cambridge University Press; 1986.
  • [2]Duke NC, Ball MC, Ellison JC: Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol Biogeogr 1998, 7:27-47.
  • [3]Rabinowitz D: Dispersal properties of mangrove propagules. Biotropica 1978, 10:47-57.
  • [4]Steinke TD, Ward CJ: Use of plastic drift cards as indicators of possible dispersal of propagules of the mangrove Avicennia marina by ocean currents. African J Mar Sci 2003, 25:169-176.
  • [5]Ellison AM, Farnsworth EJ, Merkt RE: Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecol Biogeogr 1999, 8:95-115.
  • [6]Duke NC, Lo EYY, Sun M: Global distribution and genetic discontinuities of mangroves - emerging patterns in the evolution of Rhizophora. Trees-Struct Funct 2002, 16:65-79.
  • [7]Ricklefs RE, Schwarzbach AE, Renner SS: Rate of lineage origin explains the diversity anomaly in the world’s mangrove vegetation. Am Nat 2006, 168:805-810.
  • [8]Duke NC: Mangroves. In Encyclopedia of Modern Coral Reefs. Structure, Form and Process. Edited by Hopley D. Dordrecht, The Netherlands: Springer; 2011:655-663.
  • [9]Van Steenis CGJ: The distribution of mangrove plant genera and its significance for palaeogeography. Nederl Ahad Von Wetenschappen 1962, 65:164-169.
  • [10]Briggs JC: Zoogeography and evolution. Evolution 1966, 20:282-289.
  • [11]Briggs JC: The marine East Indies: centre of origin? Global Ecol Biogeogr Let 1992, 2:149-156.
  • [12]McCoy ED, Heck KL: Biogeography of corals, seagrasses, and mangroves: an alternative to the center of origin concept. Syst Biol 1976, 25:201-210.
  • [13]Wiley EO: Vicariance biogeography. Ann Rev Ecol Syst 1988, 19:513-542.
  • [14]Palmer MA, Allan JD, Butman CA: Dispersal as a regional process affecting the local dynamics if marine and stream benthic invertebrates. Trends Ecol Evol 1996, 11:322-326.
  • [15]Plaziat JC, Cavagnetto C, Koeniguer JC, Baltzer F: History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl Ecol Manag 2001, 9:161-179.
  • [16]Pil MW, Boeger MRT, Muschner VC, Pie MR, Ostrensky A, Boeger WA: Postglacial north – south expansion of populations of Rhizophora mangle (Rhizophoraceae) along the Brazilian coast revealed by microsatellite analysis. Am J Bot 2011, 98:1031-1039.
  • [17]Cerón-Souza I, Rivera-Ocasio E, Medina E, Jiménez JA, McMillan WO, Bermingham E: Hybridization and introgression in New World red mangroves, Rhizophora (Rhizophoraceae). Am J Bot 2010, 97:945-957.
  • [18]Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC: Amazonian amphibian diversity is primarily derived from Late Miocene Andean lineages. PLoS Biol 2009, 7:e1000056.
  • [19]Schwarzbach AE, Ricklefs RE: Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. Am J Bot 2000, 87:547-564.
  • [20]Allen JA: Mangroves as alien species: The case of Hawaii. Global Ecol Biogeogr 1998, 7:61-71.
  • [21]Loomer SA: MicroCAM (Microcomputer Aided Mapping) for Windows Version 2.05. 2003.
  • [22]Muller J, Caratini C: Pollen Rhizophora (Rhizophoraceae) as a guide fossil. Pollen Et Spores 1977, 19:361-389.
  • [23]Graham A: Paleobotanical evidence and molecular data in reconstructing the historical phytogeography of Rhizophoraceae. Ann Mo Bot Gard 2006, 93:325-334.
  • [24]Churchill DM: The ecological significance of tropical mangroves in the early Tertiary floras of Southern Australia. Geol Soc Australia 1973, 4:79-86.
  • [25]Muller J: A palynological contribution to the history of the mangrove vegetation in Borneo. Hawaii: Ancient Pacific Floras; 1964:35-42.
  • [26]Muller J: Palynology of the Pedawan and Plateau Sandstone formations (Cretaceous-Eocene) in Sarawak, Malaysia. Micropaleontology 1968, 14:1-37.
  • [27]Germeraad JH, Hopping C, Muller J: Palynology of Tertiary sediments from tropical areas. Rev Palaeobot Palynol 1968, 6:189-348.
  • [28]Graham A, Jarzen DM: Studies in neotropical paleobotany. The Oligocene communities of Puerto Rico. Ann Mo Bot Gard 1969, 56:308-357.
  • [29]Langenheim JH, Hackner BL, Bartlett A: Mangrove pollen at the depositional site of Oligo-Miocene amber from Chiapas, Mexico. Botanical Museum LeafIets Harvard University 1967, 21:289-324.
  • [30]Gruas-Cavagnetto C, Tambareau Y, Villatte J: Données paléoécologiques nouvelles sur le Thanétien et l’Ilerdien de l’avantpays pyrénéen et de la Montagne Noire. Institut Francais (Pondichéry). Tracaux Section des Sciences Techniques 1988, 25:219-235.
  • [31]Chandler MEJ: Note on the occurrence of mangroves in the London Clay. P Geol Assoc 1992, 62:217-272.
  • [32]Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S: Marked decline in atmospheric carbon dioxide concentrations during Paleogene. Science 2005, 309:600-603.
  • [33]Liu Z, Pagani M, Zinniker D, DeConto R, Huber M, Brinkhuis H, Sunita R, Shah R, Leckie M, Pearson A: Global cooling during the Eocene-Oligocene climate transition. Science 2009, 27:1187-1190.
  • [34]Woodroffe CD, Grindrod J: Mangrove biogeography: The role of Quaternary environmental and sea-level change. J Biogeogr 1991, 18:479-492.
  • [35]Luther DA, Greenberg R: Mangroves: a global perspective on the evolution and conservation of their terrestrial vertebrates. BioScience 2009, 59:602-612.
  • [36]Sun M, Lo EYY: Genomic markers reveal introgressive hybridization in the Indo-West Pacific mangroves: a case study. PLoS One 2011, 6:e19671-e19681.
  • [37]Triest L: Molecular ecology and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: A review. Aquatic Bot 2008, 89:138-154.
  • [38]Nettel A, Dodd RS: Drifting propagules and receding swamps: Genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 2007, 61:958-971.
  • [39]Duke NC, Allen JA: Atlantic-East Pacific red mangroves: Rhizophora mangle, R. samoensis, R. racemosa, R. ×harrisonii. In Traditional Trees of Pacific Islands: Their Culture, Environment, and Use. Edited by Elevitch CR. Holualoa, Hawaii: Permanent Agriculture Resources (PAR); 2006:623-640.
  • [40]Takayama K, Tamura M, Tateishi Y, Webb EL, Kajita T: Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am J Bot 2013, 100:1191-1201.
  • [41]Núñez-Farfán J, Domínguez CA, Eguiarte LE, Cornejo A, Quijano M, Vargas J, Dirzo R: Genetic divergence among Mexican populations of red mangrove (Rhizophora mangle): Geographic and historic effects. Evol Ecol Res 2002, 4:1049-1064.
  • [42]Duke NC: Overlap of eastern and western mangroves in the South-Western Pacific: hybridization of all three Rhizophora (Rhizophoraceae) combinations in New Caledonia. Blumea 2010, 55:171-188.
  • [43]Pak DK, Miller KG: Paleocene to Eocene benthic foraminiferal isotopes and assemblages: implications for deepwater circulation. Paleoceangraphy 1991, 7:405-422.
  • [44]Tomczak M, Godfrey JS: Regional Oceanography: an Introduction. Oxford: Pergamon; 1994.
  • [45]Lyle M, Barron J, Bralower TJ, Huber M, Lyle AO: Pacific Ocean and Cenozoic evolution of climate. Rev Geophys 2008, 46:1-47.
  • [46]Lessios HA, Kessing BD, Robertson DR, Paulay G: Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution 1999, 53:806-817.
  • [47]Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW: Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 2001, 55:561-572.
  • [48]Kirkendale LA, Meyer CP: Phylogeography of the Patelloida profunda group (Gastropoda: Lottidae): diversification in a dispersal-driven marine system. Mol Ecol 2004, 13:2749-2762.
  • [49]Waters JM, Roy MS: Out of Africa: the slow train to Australasia. Syst Biol 2004, 53:18-24.
  • [50]Wörheide G, Solé-Cava AM, Hooper JNA: Biodiversity, molecular ecology and phylogeography of marine sponges: patterns, implications and outlooks. Integr Comp Biol 2005, 45:377-385.
  • [51]York KL, Blacket MJ, Appleton BR: The Bassian Isthmus and the major ocean currents of southeast Australia influence the phylogeography and population structure of a southern Australian intertidal barnacle Catomerus polymerus (Darwin). Mol Ecol 2008, 17:1948-1961.
  • [52]Richardson PL, Walsh D: Mapping climatological seasonal variations of surface currents in the tropical Atlantic using ship drifts. J Geophys Res 1996, 91:10537-10550.
  • [53]Scheltema RS: Initial evidence for the transport of teleplanic larvae of benthic invertebrates across the east pacific barrier. Biol Bull 1988, 174:145-152.
  • [54]Benzie JAH, Frusher S, Ballment E: Geographical variation in allozyme frequencies of Penaeus monodon (Crustacea: Decapoda) populations in Australia. Aust J Mar Freshwat Res 1992, 43:715-725.
  • [55]Andrews JC, Clegg S: Coral Sea circulation and transport deduced from model formation. Deep-Sea Res 1989, 36:957-974.
  • [56]Stramma L: Geostrophic transport of the South Equatorial Current in the Atlantic. J Mar Res 1991, 49:281-294.
  • [57]Stickley CE, Brinkhuis H, Schellenberg SA, Sluijs A, Rohl U, Fuller M, Grauert M, Huber M, Warnaar J, Williams GL: Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography 2004, 19:1-18.
  • [58]Lyle M, Gibbs S, Moore T, Rea DK: Late Oligocene initiation of the Antarctic Circumpolar Current: Evidence from the South Pacific. Geology 2007, 35:691-694.
  • [59]Farrell J, Raffi L, JaneceK TR, Murray DW, Levitan M, Dadey KA, Emeis KC, Lyle M, Flores JA, Hovan S: Late Neogene sedimentation patterns in the eastern equatorial Pacific Ocean. Proc Ocean Drill Program Sci Results 1995, 138:717-756.
  • [60]Potemra JT, Luther ME, O'Brien JJ: The seasonal circulation of the upper ocean in the Bay of Bengal. J Geophys Res 1991, 96:667-683.
  • [61]Nishimura S, Suparka S: Tectonic approach to the Neogene evolution of Pacific-Indian Ocean seaways. Tectonopgysics 1997, 281:1-16.
  • [62]Kuhnt W, Holbourn A, Hall R, Zuvela M, Käse R: Neogene history of the Indonesian throughflow. Geophys Mongraph Ser 2004, 149:299-321.
  • [63]Rodgers KB, Latif M, Legutke S: Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow. Geophys Res Let 2000, 27:2941-2944.
  • [64]Lee T, Fukumori I, Menemenlis D, Xing Z, Fu LL: Effects of the Indonesian Throughflow on the Pacific and Indian Oceans. J Phys Oceanogr 2002, 32:1404-1429.
  • [65]Gordon AL, Susanto RD, Vranes K: Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature 2003, 425:824-828.
  • [66]Romine K, Lombari G: Evolution of Pacific circulation in the Miocene: radiolarian evidence from DSDP site 289, the Miocene Ocean: paleogeography and biogeography. Geol Soc Am Mem 1985, 163:273-290.
  • [67]Srinivasan MS, Sinha DK: Early Pliocene closing of the Indonesian Seaway: evidence from north-east Indian Ocean and Tropical Pacific deep sea cores. J Asian Earth Sci 1998, 16:29-44.
  • [68]Leinen M: Biogenic silica accumulation in the central equatorial Pacific and its implications for Cenozoic paleoceanography. Geol Soc Am Bull 1979, 90:1310-1376.
  • [69]Keller G: Depth stratification of planktonic foraminifers in the Miocene Ocean, The Miocene Ocean: Paleogeography and Biogeography. Geol Soc Am Mem 1985, 163:177-195.
  • [70]Takayama K, Ohi-Toma T, Kudoh H, Kato H: Origin and diversification of Hibiscus glaber, species endemic to the oceanic Bonin Islands, revealed by chloroplast DNA polymorphism. Mol Ecol 2005, 14:1059-1071.
  • [71]Eibl JM, Plunkett GM, Lowry PP: Evolution of Polyscias sect. Tieghemopanax (Araliaceae) based on nuclear and chloroplast DNA sequence data. Adansonia 2001, 23:23-48.
  • [72]Shepherd LD, de Lange PJ, Perrie LR: Multiple colonizations of a remote oceanic archipelago by one species: how common is long-distance dispersal? J Biogeogr 2009, 36:1972-1977.
  • [73]Keppel G, Lowe AJ, Possingham HP: Changing perspectives on the biogeography of the tropical South Pacific: influences of dispersal, vicariance and extinction. J Biogeogr 2009, 36:1035-1054.
  • [74]Hall R: The plate tectonics of the Cenozoic SE Asia and the distribution of land and sea. In Biogeography and Geological Evolution of SE Asia. Edited by Hall R, Holloway JD. Leiden: Backhuys Publishers; 1998:99-131.
  • [75]Hall R: Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: a computer-based reconstructions, model and animations. J Asian Earth Sci 2002, 20:353-431.
  • [76]Keating BH, Mattey DP, Naughton J, Helsley CE: Age and origin of Truk Atoll, eastern Caroline-Islands - geochemical, radiometric-age, and paleomagnetic evidence. Geol Soc Am Bull 1984, 95:350-356.
  • [77]Huang CY: Neogene stratigraphic and tectonic relationships between southern Okinawa through and northern Taiwan. P Geol Soc China 1986, 29:138-148.
  • [78]Saitoh Y, Masuda F: Miocene sandstone of continental origin on Iriomote Island, southwest Ryukyu Arc, Eastern Asia. J Asian Earth Sci 2004, 24:137-144.
  • [79]Voris HK: Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 2000, 27:1153-1167.
  • [80]Maguire TL, Saenger P, Baverstock P, Henry R: Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Mol Ecol 2000, 9:1853-1862.
  • [81]Lo EYY: Testing hybridization hypotheses and evaluating the evolutionary potential of hybrids in mangrove plant species. J Evol Biol 2010, 23:2249-2261.
  • [82]Olmstead RG, Palmer JD: Chloroplast DNA systematics: A review of methods and data analysis. Am J Bot 1994, 81:1205-1224.
  • [83]White TJ, Bruns T, Lee S, Taylor J: Amplification and direct sequencing of fungal ribosomal genes for phylogenies. In PCR protocols: A guide to methods and applications. Edited by Innis M, Gelfand D, Sninsky J, White T. San Diego: California: Academic; 1990:315-322.
  • [84]Vaillancourt RE, Jackson HD: A chloroplast DNA hypervariable region in eucalypts. Theor Appl Genet 2000, 101:473-477.
  • [85]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughout. Nucleic Acids Res 2004, 32:1792-1797.
  • [86]Rambaut A: Se-Al. Sequence Alignment Editor v2.0a11. Oxford: University of Oxford; 2002.
  • [87]Muller K: Incorporating information from length-mutational events into phylogenetic analysis. Mol Phylogenet Evol 2005, 38:667-676.
  • [88]Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony and Other Methods version 4.0b10. Sunderland: MA: Sinauer Associates; 2002.
  • [89]Huelsenbeck JP, Ronquist F: Mr. Bayes: a program for the Bayesian inference of phylogeny. Bioinformatics 2001, 17:754-755.
  • [90]Posada D: jModelTest: Phylogenetic model averaging. Mol Biol Evol 2008, 25:1253-1256.
  • [91]Rambaut A, Drummond AJ: Tracer. 2003. http://beast.bio.ed.ac.uk/tracer webcite
  • [92]Smith SA, Dunn CW: Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 2008, 24:715-716.
  • [93]Farris JS, Kallersjo M, Kluge AG, Bult C: Testing significance of congruence. Cladistics 1994, 10:315-319.
  • [94]Legendre L, Legendre P: Numerical ecology: developments in environmental modelling 3. The Netherlands: Elsevier, Amsterdam; 1983.
  • [95]Felsenstein J: PHYLIP (Phylogeny Inference Package), version 3.66. Seattle: Zoology Department, University of Washington; 2006.
  • [96]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214-223. BioMed Central Full Text
  • [97]Dolianiti E: Frutos de Nipa no Paleoceno de Pernambuco, Brazil. Departamento Nacional de Producao Minerale, Divisiao Geologico e Minerale Boletim 1955, 158:1-36.
  • [98]Gee CT: The mangrove palm Nypa in the geological past of the New World. Wetl Ecol Manag 2001, 9:181-194.
  • [99]Ree RH, Smith SA: Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 2008, 57:4-14.
  • [100]Coates AG, Jackson JBC, Collins LS, Cronin TM, Dowsell HJ, Bybell LM, Jung P, Obando JA: Closure of Panama: the near-shore marine record in Costa Rica and Western Panama. Geol Soc Amer Bull 1992, 104:814-828.
  • [101]Schmidt DN: The closure history of the Central American seaway: evidence from isotopes and fossils to models and molecules. Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biologixcal Proxies. Micropalaeontol Soc Spec 2007, 2:429-445.
  • [102]Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.5. 2008.
  文献评价指标  
  下载次数:40次 浏览次数:25次