BMC Genetics | |
Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5 | |
Svati H Shah1  Elizabeth R Hauser1  Simon G Gregory1  William E Kraus1  Pascal Goldschmidt-Clermont2  David Seo2  Christopher B Granger1  Michael H Sketch1  David Crossman3  David Crosslin4  Elaine Dowdy4  Jacqueline Sebek4  Jessica Johnson4  Carol Haynes4  Beth Sutton4  Daniel K Nolan4  | |
[1] Department of Medicine, Duke University, 2301 Erwin Road, Durham NC, 27710, USA;Miller School of Medicine, University of Miami, 1601 Northwest 12th Avenue, Miami FL, 33136, USA;University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK;Center for Human Genetics, Duke University, 905 S. LaSalle Street, Duke Univeristy Medical Center, Durham NC, 27710, USA | |
关键词: Fine Mapping; Linkage; Intermediate Phenotype; Positional Cloning; Cardiovascular Disease; | |
Others : 1122517 DOI : 10.1186/1471-2156-13-12 |
|
received in 2011-05-05, accepted in 2012-02-27, 发布年份 2012 | |
【 摘 要 】
Background
Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas).
Results
We identified four genes with SNPs that showed the strongest and most consistent associations with LDL-C and CAD: EBF1, PPP2R2B, SPOCK1, and PRELID2. The most significant results for association of SNPs with LDL-C were: EBF1, rs6865969, p = 0.01; PPP2R2B, rs2125443, p = 0.005; SPOCK1, rs17600115, p = 0.003; and PRELID2, rs10074645, p = 0.0002). The most significant results for CAD were EBF1, rs6865969, p = 0.007; PPP2R2B, rs7736604, p = 0.0003; SPOCK1, rs17170899, p = 0.004; and PRELID2, rs7713855, p = 0.003.
Conclusion
Using an intermediate disease-related quantitative trait of LDL-C we have identified four novel CAD genes, EBF1, PRELID2, SPOCK1, and PPP2R2B. These four genes should be further examined in future functional studies as candidate susceptibility loci for cardiovascular disease mediated through LDL-cholesterol pathways.
【 授权许可】
2012 Nolan et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150214021307841.pdf | 1113KB | download | |
Figure 3. | 31KB | Image | download |
Figure 9. | 66KB | Image | download |
Figure 1. | 57KB | Image | download |
【 图 表 】
Figure 1.
Figure 9.
Figure 3.
【 参考文献 】
- [1]World Health Organization [http://www.who.int/research/en/] webcite
- [2]American Heart Association [http:/ / www.heart.org/ HEARTORG/ Conditions/ Conditions_UCM_001087_SubHomePage.j sp] webcite
- [3]Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U: Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 1994, 330(15):1041-1046.
- [4]Rissanen AM: Familial occurrence of coronary heart disease: effect of age at diagnosis. Am J Cardiol 1979, 44(1):60-66.
- [5]Shea S, Ottman R, Gabrieli C, Stein Z, Nichols A: Family history as an independent risk factor for coronary artery disease. J Am Coll Cardiol 1984, 4(4):793-801.
- [6]Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, Masson G, et al.: A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 2007, 316(5830):1491-1493.
- [7]Hauser ER, Crossman DC, Granger CB, Haines JL, Jones CJ, Mooser V, McAdam B, Winkelmann BR, Wiseman AH, Muhlestein JB, et al.: A genomewide scan for early-onset coronary artery disease in 438 families: the GENECARD Study. Am J Hum Genet 2004, 75(3):436-447.
- [8]Connelly JJ, Shah SH, Doss JF, Gadson S, Nelson S, Crosslin DR, Hale AB, Lou X, Wang T, Haynes C, et al.: Genetic and functional association of FAM5C with myocardial infarction. BMC Med Genet 2008, 9:33.
- [9]Wang L, Hauser ER, Shah SH, Pericak-Vance MA, Haynes C, Crosslin D, Harris M, Nelson S, Hale AB, Granger CB, et al.: Peakwide mapping on chromosome 3q13 identifies the kalirin gene as a novel candidate gene for coronary artery disease. Am J Hum Genet 2007, 80(4):650-663.
- [10]Shah SH, Kraus WE, Crossman DC, Granger CB, Haines JL, Jones CJ, Mooser V, Huang L, Haynes C, Dowdy E, et al.: Serum lipids in the GENECARD study of coronary artery disease identify quantitative trait loci and phenotypic subsets on chromosomes 3q and 5q. Ann Hum Genet 2006, 70(Pt 6):738-748.
- [11]Williams SM, Haines JL: Correcting Away the Hidden Heritability. Annals of Human Genetics 2011. no-no
- [12]Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972, 18(6):499-502.
- [13]Otvos JD, Jeyarajah EJ, Bennett DW: Quantification of plasma lipoproteins by proton nuclear magnetic resonance spectroscopy. Clin Chem 1991, 37(3):377-386.
- [14]Otvos JD, Jeyarajah EJ, Bennett DW, Krauss RM: Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clin Chem 1992, 38(9):1632-1638.
- [15]Shah SH, Granger CB, Hauser ER, Kraus WE, Sun JL, Pieper K, Nelson CL, Delong ER, Califf RM, Newby LK: Reclassification of cardiovascular risk using integrated clinical and molecular biosignatures: Design of and rationale for the Measurement to Understand the Reclassification of Disease of Cabarrus and Kannapolis (MURDOCK) Horizon 1 Cardiovascular Disease Study. Am Heart J 2010, 160(3):371-379 e372.
- [16]Seo D, Wang T, Dressman H, Herderick EE, Iversen ES, Dong C, Vata K, Milano CA, Rigat F, Pittman J, et al.: Gene expression phenotypes of atherosclerosis. Arterioscler Thromb Vasc Biol 2004, 24(10):1922-1927.
- [17]Cornhill JF, Herderick EE, Vince DG: The clinical morphology of human atherosclerotic lesions. Lessons from the PDAY Study. Pathobiological Determinants of Atherosclerosis in Youth. Wien Klin Wochenschr 1995, 107(18):540-543.
- [18]Barrett JC: Haploview: Visualization and analysis of SNP genotype data. Cold Spring Harb Protoc 2009., 2009(10) pdb ip71
- [19]Lewis POaZ D: Genetic Data Analysis: Computer program for the analysis of allelic data Version 1.0. 2001.
- [20]Wittke-Thompson JK, Pluzhnikov A, Cox NJ: Rational inferences about departures from Hardy-Weinberg equilibrium. Am J Hum Genet 2005, 76(6):967-986.
- [21]Abecasis GR, Cardon LR, Cookson WO: A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000, 66(1):279-292.
- [22]Fretz JA, Nelson T, Xi Y, Adams DJ, Rosen CJ, Horowitz MC: Altered metabolism and lipodystrophy in the early B-cell factor 1-deficient mouse. Endocrinology 2010, 151(4):1611-1621.
- [23]O'Connell JR, Weeks DE: The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet 1995, 11(4):402-408.
- [24]Ott J: Linkage probability and its approximate confidence interval under possible heterogeneity. Genet Epidemiol Suppl 1986, 1:251-257.
- [25]Chung RH, Hauser ER, Martin ER: Interpretation of simultaneous linkage and family-based association tests in genome screens. Genet Epidemiol 2007, 31(2):134-142.
- [26]Martin ER, Bass MP, Hauser ER, Kaplan NL: Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 2003, 73(5):1016-1026.
- [27]Liu J, Juo SH, Holopainen P, Terwilliger J, Tong X, Grunn A, Brito M, Green P, Mustalahti K, Maki M, et al.: Genomewide linkage analysis of celiac disease in Finnish families. Am J Hum Genet 2002, 70(1):51-59.
- [28]Postma DS, Bleecker ER, Amelung PJ, Holroyd KJ, Xu J, Panhuysen CI, Meyers DA, Levitt RC: Genetic susceptibility to asthma--bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med 1995, 333(14):894-900.
- [29]Sakai K, Shirasawa S, Ishikawa N, Ito K, Tamai H, Kuma K, Akamizu T, Tanimura M, Furugaki K, Yamamoto K, et al.: Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto's thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum Mol Genet 2001, 10(13):1379-1386.
- [30]Samuelsson L, Enlund F, Torinsson A, Yhr M, Inerot A, Enerback C, Wahlstrom J, Swanbeck G, Martinsson T: A genome-wide search for genes predisposing to familial psoriasis by using a stratification approach. Hum Genet 1999, 105(6):523-529.
- [31]Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z, Delmonte T, Kocher K, Miller K, Guschwan S, et al.: Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001, 29(2):223-228.
- [32]Friedrichs F, Zugck C, Rauch GJ, Ivandic B, Weichenhan D, Muller-Bardorff M, Meder B, El Mokhtari NE, Regitz-Zagrosek V, Hetzer R, et al.: HBEGF, SRA1, and IK: Three cosegregating genes as determinants of cardiomyopathy. Genome Res 2009, 19(3):395-403.
- [33]Yoneyama T, Kasuya H, Onda H, Akagawa H, Jinnai N, Nakajima T, Hori T, Inoue I: Association of positional and functional candidate genes FGF1, FBN2, and LOX on 5q31 with intracranial aneurysm. J Hum Genet 2003, 48(6):309-314.
- [34]Walter JW, Blei F, Anderson JL, Orlow SJ, Speer MC, Marchuk DA: Genetic mapping of a novel familial form of infantile hemangioma. Am J Med Genet 1999, 82(1):77-83.
- [35]Rankinen T, An P, Rice T, Sun G, Chagnon YC, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, et al.: Genomic scan for exercise blood pressure in the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Hypertension 2001, 38(1):30-37.
- [36]Takami S, Wong ZY, Stebbing M, Harrap SB: Linkage analysis of glucocorticoid and beta2-adrenergic receptor genes with blood pressure and body mass index. Am J Physiol 1999, 276(4 Pt 2):H1379-1384.
- [37]Kooner JS, Chambers JC, Aguilar-Salinas CA, Hinds DA, Hyde CL, Warnes GR, Gomez Perez FJ, Frazer KA, Elliott P, Scott J, et al.: Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet 2008, 40(2):149-151.
- [38]Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, et al.: Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466(7307):707-713.
- [39]Waterworth DM, Ricketts SL, Song K, Chen L, Zhao JH, Ripatti S, Aulchenko YS, Zhang W, Yuan X, Lim N, et al.: Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol 2010, 30(11):2264-2276.
- [40]Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath SC, Timpson NJ, Najjar SS, Stringham HM, et al.: Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 2008, 40(2):161-169.
- [41]Wain LV, Verwoert GC, O'Reilly PF, Shi G, Johnson T, Johnson AD, Bochud M, Rice KM, Henneman P, Smith AV, et al.: Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 2011, 43(10):1005-1011.
- [42]Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, et al.: Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011, 478(7367):103-109.
- [43]Lukin K, Fields S, Hartley J, Hagman J: Early B cell factor: Regulator of B lineage specification and commitment. Semin Immunol 2008, 20(4):221-227.
- [44]Akerblad P, Lind U, Liberg D, Bamberg K, Sigvardsson M: Early B-cell factor (O/E-1) is a promoter of adipogenesis and involved in control of genes important for terminal adipocyte differentiation. Mol Cell Biol 2002, 22(22):8015-8025.
- [45]Hesslein DG, Fretz JA, Xi Y, Nelson T, Zhou S, Lorenzo JA, Schatz DG, Horowitz MC: Ebf1-dependent control of the osteoblast and adipocyte lineages. Bone 2009, 44(4):537-546.
- [46]Christin-Maitre S, Tachdjian G: Genome-wide association study and premature ovarian failure. Ann Endocrinol (Paris) 2010, 71(3):218-221.
- [47]Liu YZ, Guo YF, Wang L, Tan LJ, Liu XG, Pei YF, Yan H, Xiong DH, Deng FY, Yu N, et al.: Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche. PLoS Genet 2009, 5(3):e1000420.
- [48]Marr HS, Basalamah MA, Bouldin TW, Duncan AW, Edgell CJ: Distribution of testican expression in human brain. Cell Tissue Res 2000, 302(2):139-144.