期刊论文详细信息
BMC Evolutionary Biology
Global analysis of saliva as a source of bacterial genes for insights into human population structure and migration studies
Hans-Peter Horz1  Georg Conrads4  Anne Sonanini4  Hildegard Schilling4  Olga Kessler4  Mark Stoneking2  Jing Li3  Karsten Henne4 
[1] Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, D-52057, Germany;Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, D-04103, Germany;Current address: Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, D-52057, Germany
关键词: Glucosyltransferase;    Human migration pattern;    Oral Microbiome;   
Others  :  1118004
DOI  :  10.1186/s12862-014-0190-3
 received in 2014-04-11, accepted in 2014-08-13,  发布年份 2014
PDF
【 摘 要 】

Background

The genetic diversity of the human microbiome holds great potential for shedding light on the history of our ancestors. Helicobacter pylori is the most prominent example as its analysis allowed a fine-scale resolution of past migration patterns including some that could not be distinguished using human genetic markers. However studies of H. pylori require stomach biopsies, which severely limits the number of samples that can be analysed. By focussing on the house-keeping gene gdh (coding for the glucose-6-phosphate dehydrogenase), on the virulence gene gtf (coding for the glucosyltransferase) of mitis-streptococci and on the 16S-23S rRNA internal transcribed spacer (ITS) region of the Fusobacterium nucleatum/periodonticum-group we here tested the hypothesis that bacterial genes from human saliva have the potential for distinguishing human populations.

Results

Analysis of 10 individuals from each of seven geographic regions, encompassing Africa, Asia and Europe, revealed that the genes gdh and ITS exhibited the highest number of polymorphic sites (59% and 79%, respectively) and most OTUs (defined at 99% identity) were unique to a given country. In contrast, the gene gtf had the lowest number of polymorphic sites (21%), and most OTUs were shared among countries. Most of the variation in the gdh and ITS genes was explained by the high clonal diversity within individuals (around 80%) followed by inter-individual variation of around 20%, leaving the geographic region as providing virtually no source of sequence variation. Conversely, for gtf the variation within individuals accounted for 32%, between individuals for 57% and among geographic regions for 11%. This geographic signature persisted upon extension of the analysis to four additional locations from the American continent. Pearson correlation analysis, pairwise Fst-cluster analysis as well as UniFrac analyses consistently supported a tree structure in which the European countries clustered tightly together and branched with American countries and South Africa, to the exclusion of Asian countries and the Congo.

Conclusion

This study shows that saliva harbours protein-coding bacterial genes that are geographically structured, and which could potentially be used for addressing previously unresolved human migration events.

【 授权许可】

   
2014 Henne et al.; licensee BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150206015531201.pdf 1221KB PDF download
Figure 9. 49KB Image download
Figure 8. 24KB Image download
Figure 7. 17KB Image download
Figure 6. 24KB Image download
Figure 5. 77KB Image download
Figure 4. 37KB Image download
Figure 3. 240KB Image download
Figure 2. 34KB Image download
Figure 1. 13KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Hohwy J, Reinholdt J, Kilian M: Population dynamics of Streptococcus mitis in its natural habitat. Infect Immun 2001, 69:6055-6063.
  • [2]Bek-Thomsen M, Tettelin H, Hance I, Nelson KE, Kilian M: Population diversity and dynamics of Streptococcus mitis, Streptococcus oralis, and Streptococcus infantis in the upper respiratory tracts of adults, determined by a nonculture strategy. Infect Immun 2008, 76:1889-1896.
  • [3]Linz B, Balloux F, Moodley Y, Manica A, Liu H, Roumagnac P, Falush D, Stamer C, Prugnolle F, van der Merwe SW, Yamaoka Y, Graham DY, Perez-Trallero E, Wadstrom T, Suerbaum S, Achtman M: An African origin for the intimate association between humans and Helicobacter pylori. Nature 2007, 445:915-918.
  • [4]Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, Blaser MJ, Graham DY, Vacher S, Perez-Perez GI, Yamaoka Y, Megraud F, Otto K, Reichard U, Katzowitsch E, Wang X, Achtman M, Suerbaum S: Traces of human migrations in Helicobacter pylori populations. Science 2003, 299:1582-1585.
  • [5]Moodley Y, Linz B, Yamaoka Y, Windsor HM, Breurec S, Wu JY, Maady A, Bernhoft S, Thiberge JM, Phuanukoonnon S, Jobb G, Siba P, Graham DY, Marshall BJ, Achtman M: The peopling of the Pacific from a bacterial perspective. Science 2009, 323:527-530.
  • [6]Melton T, Peterson R, Redd AJ, Saha N, Sofro AS, Martinson J, Stoneking M: Polynesian genetic affinities with Southeast Asian populations as identified by mtDNA analysis. Am J Hum Genet 1995, 57:403-414.
  • [7]Trejaut JA, Kivisild T, Loo JH, Lee CL, He CL, Hsu CJ, Lee ZY, Lin M: Traces of archaic mitochondrial lineages persist in Austronesian-speaking Formosan populations. PLoS Biol 2005, 3:e247.
  • [8]Oppenheimer SJ, Richards M: Polynesian origins. Slow boat to Melanesia? Nature 2001, 410:166-167.
  • [9]Richards M, Oppenheimer S, Sykes B: mtDNA suggests Polynesian origins in Eastern Indonesia. Am J Hum Genet 1998, 63:1234-1236.
  • [10]Wirth T, Wang X, Linz B, Novick RP, Lum JK, Blaser M, Morelli G, Falush D, Achtman M: Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. Proc Natl Acad Sci U S A 2004, 101:4746-4751.
  • [11]Suerbaum S, Josenhans C: Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 2007, 5:441-452.
  • [12]Blaser MJ, Falkow S: What are the consequences of the disappearing human microbiota? Nat Rev Microbiol 2009, 7:887-894.
  • [13]Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J: Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 2012, 13:R42. BioMed Central Full Text
  • [14]Warinner C, Rodrigues JF, Vyas R, Trachsel C, Shved N, Grossmann J, Radini A, Hancock Y, Tito RY, Fiddyment S, Speller C, Hendy J, Charlton S, Luder HU, Salazar-Garcia DC, Eppler E, Seiler R, Hansen LH, Castruita JA, Barkow-Oesterreicher S, Teoh Y, Kelstrup CD, Olsen JV, Nanni P, Kawai T, Willerslev E, von Mering C, Lewis CM, Collins MJ, Gilbert MT, et al.: Pathogens and host immunity in the ancient human oral cavity. Nat Genet 2014, 46:336-344.
  • [15]Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, Bradshaw CJ, Townsend G, Soltysiak A, Alt KW, Parkhill J, Cooper A: Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet 2013, 45:450-455.
  • [16]Quinque D, Kittler R, Kayser M, Stoneking M, Nasidze I: Evaluation of saliva as a source of human DNA for population and association studies. Anal Biochem 2006, 353:272-277.
  • [17]Li Y, Ismail AI, Ge Y, Tellez M, Sohn W: Similarity of bacterial populations in saliva from African-American mother-child dyads. J Clin Microbiol 2007, 45:3082-3085.
  • [18]Li Y, Caufield PW: The fidelity of initial acquisition of mutans streptococci by infants from their mothers. J Dent Res 1995, 74:681-685.
  • [19]Van Winkelhoff AJ, Boutaga K: Transmission of periodontal bacteria and models of infection. J Clin Periodontol 2005, 32(Suppl 6):16-27.
  • [20]Caufield PW: Tracking human migration patterns through the oral bacterial flora. Clin Microbiol Infect 2009, 15(Suppl 1):37-39.
  • [21]Caufield PW, Ratanapridakul K, Allen DN, Cutter GR: Plasmid-containing strains of Streptococcus mutans cluster within family and racial cohorts: implications for natural transmission. Infect Immun 1988, 56:3216-3220.
  • [22]Haraldsson G, Holbrook WP, Kononen E: Clonal persistence of oral Fusobacterium nucleatum in infancy. J Dent Res 2004, 83:500-504.
  • [23]Haubek D, Poulsen K, Westergaard J, Dahlen G, Kilian M: Highly toxic clone of Actinobacillus actinomycetemcomitans in geographically widespread cases of juvenile periodontitis in adolescents of African origin. J Clin Microbiol 1996, 34:1576-1578.
  • [24]Musser JM, Kroll JS, Granoff DM, Moxon ER, Brodeur BR, Campos J, Dabernat H, Frederiksen W, Hamel J, Hammond G, Arne Høiby EA, Jonsdottir KE, Kabeer M, Kallings I, Khan WN, Kilian M, Knowles K, Koornhof HJ, Law B, Li KI, Montgomery J, Pattison PE, Piffaretti JC, Takala AK, Thong ML, Wall RA, Ward JI, Selander RK: Global genetic structure and molecular epidemiology of encapsulated Haemophilus influenzae. Rev Infect Dis 1990, 12:75-111.
  • [25]Nasidze I, Li J, Quinque D, Tang K, Stoneking M: Global diversity in the human salivary microbiome. Genome Res 2009, 19:636-643.
  • [26]Urwin R, Maiden MC: Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 2003, 11:479-487.
  • [27]Do T, Jolley KA, Maiden MC, Gilbert SC, Clark D, Wade WG, Beighton D: Population structure of Streptococcus oralis. Microbiology 2009, 155:2593-2602.
  • [28]Ip M, Chi F, Chau SS, Hui M, Tang J, Chan PK: Use of the housekeeping genes, gdh (zwf) and gki, in multilocus sequence typing to differentiate Streptococcus pneumoniae from Streptococcus mitis and Streptococcus oralis. Diagn Microbiol Infect Dis 2006, 56:321-324.
  • [29]Monchois V, Willemot RM, Monsan P: Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 1999, 23:131-151.
  • [30]Gonzales-Marin C, Spratt DA, Allaker RP: Maternal oral origin of Fusobacterium nucleatum in adverse pregnancy outcomes as determined using the 16S-23S rRNA gene intergenic transcribed spacer region. J Med Microbiol 2013, 62:133-144.
  • [31]Conrads G, Claros MC, Citron DM, Tyrrell KL, Merriam V, Goldstein EJ: 16S-23S rDNA internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Fusobacterium. Int J Syst Evol Microbiol 2002, 52:493-499.
  • [32]Kiratisin P, Li L, Murray PR, Fischer SH: Use of housekeeping gene sequencing for species identification of viridans streptococci. Diagn Microbiol Infect Dis 2005, 51:297-301.
  • [33]Alvarez I, Wendel JF: Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 2003, 29:417-434.
  • [34]Argimon S, Alekseyenko AV, DeSalle R, Caufield PW: Phylogenetic analysis of glucosyltransferases and implications for the coevolution of mutans streptococci with their mammalian hosts. PLoS One 2013, 8:e56305.
  • [35]Hoshino T, Kawaguchi M, Shimizu N, Hoshino N, Ooshima T, Fujiwara T: PCR detection and identification of oral streptococci in saliva samples using gtf genes. Diagn Microbiol Infect Dis 2004, 48:195-199.
  • [36]Fujiwara T, Hoshino T, Ooshima T, Sobue S, Hamada S: Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect Immun 2000, 68:2475-2483.
  • [37]Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T: ARB: a software environment for sequence data. Nucleic Acids Res 2004, 32:1363-1371.
  • [38]Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013, 41:D590-D596.
  • [39]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9:286-298.
  • [40]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, 75:7537-7541.
  • [41]Chao A: Estimating the population size for capture-recapture data with unequal catchability. Biometrics 1987, 43:783-791.
  • [42]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
  • [43]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [44]Lozupone C, Hamady M, Knight R: UniFrac–an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 2006, 7:371. BioMed Central Full Text
  • [45]Bandelt HJ, Forster P, Rohl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
  • [46]Pavesi A: Utility of JC polyomavirus in tracing the pattern of human migrations dating to prehistoric times. J Gen Virol 2005, 86:1315-1326.
  • [47]Koren O, Knights D, Gonzalez A, Waldron L, Segata N, Knight R, Huttenhower C, Ley RE: A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol 2013, 9:e1002863.
  • [48]Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE: Metagenomic analysis of the human distal gut microbiome. Science 2006, 312:1355-1359.
  • [49]Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI: The human microbiome project. Nature 2007, 449:804-810.
  • [50]Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P: Genomic variation landscape of the human gut microbiome. Nature 2013, 493:45-50.
  • [51]Benezra A, DeStefano J, Gordon JI: Anthropology of microbes. Proc Natl Acad Sci U S A 2012, 109:6378-6381.
  • [52]Fortenberry JD: The uses of race and ethnicity in human microbiome research. Trends Microbiol 2013, 21:165-166.
  • [53]Mellars P: Going east: new genetic and archaeological perspectives on the modern human colonization of Eurasia. Science 2006, 313:796-800.
  • [54]Stoneking M, Harvarti K: Early Old World migrations of Homo sapiens: human biology. In The Encyclopedia of Global Human Migration. Edited by Ness I. Blackwell, New York; 2013.
  • [55]Romualdi C, Balding D, Nasidze IS, Risch G, Robichaux M, Sherry ST, Stoneking M, Batzer MA, Barbujani G: Patterns of human diversity, within and among continents, inferred from biallelic DNA polymorphisms. Genome Res 2002, 12:602-612.
  • [56]Rolla G, Ciardi JE, Schultz SA: Adsorption of glucosyltransferase to saliva coated hydroxyapatite. Possible mechanism for sucrose dependent bacterial colonization of teeth. Scand J Dent Res 1983, 91:112-117.
  • [57]Bowen WH, Koo H: Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 2011, 45:69-86.
  • [58]Breurec S, Guillard B, Hem S, Brisse S, Dieye FB, Huerre M, Oung C, Raymond J, Tan TS, Thiberge JM, Vong S, Monchy D, Linz B: Evolutionary history of Helicobacter pylori sequences reflect past human migrations in Southeast Asia. PLoS One 2011, 6:e22058.
  • [59]Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, Pignatelli M, Mira A: The oral metagenome in health and disease. Isme J 2012, 6:46-56.
  文献评价指标  
  下载次数:79次 浏览次数:23次