期刊论文详细信息
BMC Evolutionary Biology
Multiple hybridization events, polyploidy and low postmating isolation entangle the evolution of neotropical species of Epidendrum (Orchidaceae)
Carlos Naranjo2  Lorena Riofrío2  David Draper2  Isabel Marques1 
[1] Current address: UBC Botanical Garden & Centre for Plant Research, and Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver BC V6T 1Z4, Canada;Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
关键词: Reticulate evolution;    Reproduction;    Orchids;    Genome size;    Conservation;    AFLPs;   
Others  :  858056
DOI  :  10.1186/1471-2148-14-20
 received in 2013-08-06, accepted in 2014-01-30,  发布年份 2014
PDF
【 摘 要 】

Background

Hybridization and polyploidy are central processes in evolution and speciation. These mechanisms often lead to complex patterns of genetic variation and the creation of novel genotypes, which may establish if they become isolated from gene flow. However, in the absence of reproductive isolation, species boundaries might easily be disrupted. Here, we used a combination of AFLPs, chloroplast DNA markers and flow cytometry to investigate the evolutionary outcomes of hybridization between two endemic Ecuadorian species of Epidendrum (E. madsenii and E. rhopalostele) in three hybrid zones. Postmating isolation was also quantified to determine the role of this barrier in restraining gene flow between hybrids and the parental species. In addition, future ecological niche models were constructed to predict the outcomes of hybridization between these species.

Results

Our results confirmed the presence of hybrids in all hybrid zones, but revealed that a third parental species (E. falcisepalum) has contributed to one of the hybrid zones studied. Backcross genotypes were frequent in all hybrid zones, which was in accordance with the absence of strong reproductive barriers. The process of hybridization was highly asymmetric and followed in some cases by polyploidy. The projection of future niche models predicted a severe reduction in the area suitable for the occurrence of these species, although favorable conditions will still occur for the existence of the current hybrid zones.

Conclusions

The recurrent process of hybridization has compromised the genetic integrity of the parental species. Most individuals of the parental species can no longer be considered as pure-bred individuals because most were classified as backcrossed hybrids. Novel genetic lineages occur in all hybrid zones implying that hybrids are fertile and can compete with the parental species. These results, together with the prediction of suitable conditions for the future occurrence of these hybrid zones, highlight the importance of conserving these geographic areas as sources of novel taxonomic entities.

【 授权许可】

   
2014 Marques et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723092248863.pdf 947KB PDF download
32KB Image download
47KB Image download
59KB Image download
196KB Image download
【 图 表 】

【 参考文献 】
  • [1]Arnold M: Natural hybridization as an evolutionary process. Ann Rev Ecol Syst 1992, 23:237-261.
  • [2]Barton NH, Hewitt GM: Adaptation, speciation and hybrid zones. Nature 1989, 341:497-503.
  • [3]Baxter JS, Taylor EB, Devlin RH, Hagen J, McPhail JD: Evidence for natural hybridization between Dolly Varden (Salvelinus malma) and bull trout (Salvelinus confluentus). Can J Fish Aquat Sci 1997, 54:421-429.
  • [4]Karlin S, McGregor J: Application of method of small parameters in multi-niche population genetics models. Theor Popul Biol 1972, 3:180-209.
  • [5]Gavrilets S: Hybrid zones with Dobzhansky-type epistatic selection. Evolution 1997, 51:1027-1035.
  • [6]Carney SE, Gardner KA, Rieseberg LH: Evolutionary changes over the fifty-year history of a hybrid population of sunflowers (Helianthus). Evolution 2000, 54:462-474.
  • [7]Coyer JA, Hoarau G, Stam WT, Olsen JL: Hybridization and introgression in a mixed population of the intertidal seaweeds Fucus evanescens and F. serratus. J Evol Biol 2007, 20:2322-2333.
  • [8]Emms SK, Arnold ML: The effect of habitat on parental and hybrid fitness: transplant experiments with Louisiana irises. Evolution 1997, 51:1112-1119.
  • [9]Arnold ML, Hodges SA: Are natural hybrids fit or unfit relative to their parents? Trends Ecol Evol 1995, 10:67-71.
  • [10]Mallet J: Hybridization as an invasion of the genome. Trends Ecol Evol 2005, 20:229-237.
  • [11]Barton NH, Hewitt GM: Analysis of hybrid zones. Ann Rev Ecol Syst 1985, 16:113-148.
  • [12]Dobzhansky T: Speciation as a stage in evolutionary divergence. Am Nat 1940, 74:312-321.
  • [13]Szymura JM, Barton NH: The genetic structure of the hybrid zone between the fire-bellied toads Bombina bombina and B. variegata: comparisons between transects and between loci. Evolution 1991, 45:237-261.
  • [14]McMillan WO, Weigt LA, Palumbi SR: Color pattern evolution, assortative mating and genetic differentiation in brightly colored butterflyfishes (Chaetodontidae). Evolution 1999, 53:247-260.
  • [15]Mallet J, McMillan WO, Jiggins CD: Mimicry and warning colour at the boundary between races and species. In Endless Forms: Species and Speciation. Edited by Howard DJ, Berlocher SH. New York: Oxford University Press; 1998:390-403.
  • [16]Meagher S, Dowling TE: Hybridization between the Cyprinid fishes Luxilus albeolus, L. cornutus, and L. cerasinus with comments on the proposed hybrid origin of L. albeolus. Copeia 1991, 4:979-991.
  • [17]Jiggins CD, Mallet J: Bimodal hybrid zones and speciation. Trends Ecol Evol 2000, 15:250-255.
  • [18]Cruzan MB, Arnold ML: Ecological and genetic associations in an Iris hybrid zone. Evolution 1993, 47:1432-1445.
  • [19]Fritsche F, Kaltz O: Is the Prunella (Lamiaceae) hybrid zone structured by an environmental gradient? Evidence from a reciprocal transplant experiment. Am J Bot 2000, 87:995-1003.
  • [20]Arias CF, Munoz AG, Jiggins CD, Mavarez J, Berming-Ham E, Linares M: A hybrid zone provides evidence for incipient ecological speciation in Heliconius butterflies. Mol Ecol 2008, 17:4699-4712.
  • [21]Ramsey J, Bradshaw HD Jr, Schemske DW: Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 2003, 57:1520-1534.
  • [22]Coyne JA, Orr HA: Speciation. Sunderland: Sinauer Associates; 2004.
  • [23]Nosil P, Vines TH, Funk DJ: Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 2005, 59:705-719.
  • [24]Kay KM: Reproductive isolation between two closely related hummingbird-pollinated neotropical gingers. Evolution 2006, 60:538-552.
  • [25]Lowry DB, Modliszewski J, Wright KM, Wu CA, Willis JH: The strength and genetic basis of reproductive isolating barriers in flowering plants. Phil Trans R Soc B 2008, 363:3009-3021.
  • [26]Niemiller ML, Fitzpatrick BM, Miller BT: Recent divergence-with-gene-flow in Tennessee cave salamanders (Plethodontidae:Gyrinophilus) inferred from gene genealogies. Mol Ecol 2008, 117:2258-2275.
  • [27]Currat M, Ruedi M, Petit RJ, Excoffier L: The hidden side of invasions: massive introgression by local genes. Evolution 2008, 62:1908-1920.
  • [28]Soltis DE, Soltis PS, Tate JA: Advances in the study of polyploidy since Plant Speciation. New Phytol 2004, 161:173-191.
  • [29]Husband BC: The role of triploids in the evolutionary dynamics of mixed-ploidy populations. Biol J Linnean Soc 2004, 82:537-546.
  • [30]Husband BC, Sabara HA: Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium. New Phytol 2004, 161:703-713.
  • [31]Slotte T, Huang H, Lascoux M, Ceplitis A: Polyploid speciation did not confer instant reproductive isolation in Capsella (Brassicaceae). Mol Biol Evol 2008, 25:1472-1481.
  • [32]Gögler J, Stökl J, Sramkova A, Twele R, Francke W, Cozzolino S, Cortis P, Scrugli A, Ayasse M: Ménage à trois – two endemic species of deceptive orchids and one pollinator species. Evolution 2009, 63:2222-2234.
  • [33]Xu S, Schlüter PM, Scopece G, Breitkopf H, Gross K, Cozzolino S, Schiestl FP: Floral isolation is the main reproductive barrier among closely related sexually deceptive orchids. Evolution 2012, 65:2606-2620.
  • [34]Scopece G, Widmer A, Cozzolino S: Evolution of postzygotic reproductive isolation in a guild of deceptive orchids. Am Nat 2008, 171:315-326.
  • [35]Hedrén M, Nordström S, Persson Hovmalm HA, Pedersen HA, Hansson S: Patterns of polyploid evolution in Greek Marsh Orchids (Dactylorhiza, Orchidaceae) as revealed by allozymes, AFLPs and plastid DNA data. Am J Bot 2007, 94:1205-1218.
  • [36]Hágsater E, Soto Arenas MA: Epidendrum L. In Genera Orchidacearum. Volume 4. Edited by Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN. Oxford: Oxford University Press; 2005:236-251.
  • [37]Pansarin ER, Amaral MCE: Pollen and nectar as a reward in the basal epidendroid Psilochilus modestus (Orchidaceae: Triphoreae): a study of floral morphology, reproductive biology and pollination strategy. Flora 2008, 203:474-483.
  • [38]Pinheiro F, Macêdo A, Salatino A: Phylogenetic relationships and infrageneric classification of Epidendrum subgenus Amphiglottium (Laeliinae, Orchidaceae). Plant Syst Evol 2009, 283:165-177.
  • [39]Pinheiro F, De Barros F, Palma-Silva C, Meyer D, Fay MF, Suzuki RM, Lexer C, Cozzolino S: Hybridization and introgression across different ploidy levels in the Neotropical orchids Epidendrum fulgens and E. puniceoluteum (Orchidaceae). Mol Ecol 2010, 19:3981-3994.
  • [40]Soltis PS, Soltis DE: Multiple origins of the allotetraploid Tragopogon mirus (Compositae): rDNA evidence. Syst Bot 1991, 16:407-413.
  • [41]Marques I, Nieto Feliner G, Draper D, Martins-Loução MA, Fuertes Aguilar J: Unraveling cryptic reticulate relationships and the origin of orphan hybrid disjunct populations in Narcissus. Evolution 2010, 64:2353-2368.
  • [42]Tiffin P, Olson MS, Moyle LC: Asymmetrical crossing barriers in angiosperms. Proc R Soc B 2001, 26:861-867.
  • [43]Campbell DR, Galen C, Wu CA: Ecophysiology of first and second generation hybrids in a natural plant hybrid zone. Oecologia 2005, 144:214-225.
  • [44]Mahelka V, Fehrer J, Krahulec F, Jarolímová V: Recent natural hybridization between two allopolyploid wheatgrasses (Elytrigia, Poaceae): ecological and evolutionary Implications. Ann Bot 2007, 100:249-240.
  • [45]Marques I, Rosselló-Graell A, Draper D, Iriondo JM: Pollination patterns limit hybridization between two sympatric species of Narcissus (Amaryllidaceae). Am J Bot 2007, 94:1352-1359.
  • [46]Pessoa EM, Alves M, Alves-Araújo A, Palma-Silva C, Pinheiro F: Integrating different tools to disentangle species complexes: a case study in Epidendrum (Orchidaceae). Taxon 2012, 61:721-734.
  • [47]Pinheiro F, Cozzolino S: Epidendrum (Orchidaceae) as a model system for ecological and evolutionary studies in the Neotropics. Taxon 2013, 62:77-88.
  • [48]Moraes AP, Chinaglia M, Palma-Silva C, Pinheiro F: Interploidy hybridization in sympatric zones: the formation of Epidendrum fulgens×E. puniceoluteum hybrids (Epidendroideae, Orchidaceae). Ecol Evol 2013, 3:3824-3837.
  • [49]Vega Y, Marques I, Castro S, Loureiro J: Outcomes of extensive hybridization and introgression in Epidendrum (Orchidaceae): can we rely on species boundaries? PloS One 2013, 8(11):e80662. doi:10.1371/journal.pone.0080662
  • [50]Cozzolino S, Nardella AM, Impagliazzo S, Widmer A, Lexer C: Hybridization and conservation of Mediterranean orchids: Should we protect the orchid hybrids or the orchid hybrid zones? Biol Conser 2006, 129:14-23.
  • [51]Moccia MD, Widmer A, Cozzolino S: The strength of reproductive isolation in two hybridizing food-deceptive orchid species. Mol Ecol 2007, 16:2855-2866.
  • [52]Broyles SB: Hybrid bridges to gene flow: a case study in milkweeds (Asclepias). Evolution 2002, 56:1943-1953.
  • [53]Levin DA, Francisco-Ortega J, Jansen RK: Hybridization and the extinction of rare plant species. Cons Biol 1996, 10:10-16.
  • [54]Crisp P, Jones BMG: Hybridization of Senecio squalidus and Senecio and introgression of genes from diploid into tetraploid Senecio species. Ann Bot 1978, 42:937-944.
  • [55]Jacquemyn H, Brys R, Honnay O, Roldan-Ruiz I: Asymmetric gene introgression in two closely related Orchis species: evidence from morphometric and genetic analyses. BMC Evol Biol 2012, 12:178. BioMed Central Full Text
  • [56]Furches MS, Small RL, Furche A: Hybridization leads to interspecific gene flow in Sarracenia (Sarraceniaceae). Am J Bot 2013, 100:2085-2091.
  • [57]Abbott RJ, Ashton PA, Forbes DG: Introgressive origin of the radiate groundsel, Senecio vulgaris L. var. hibernicus Syme: Aat-3 evidence. Heredity 1992, 68:425-435.
  • [58]Arnold ML, Tang S, Knapp SJ, Martin NH: Asymmetric introgressive hybridization among Louisiana Iris species. Genes 2010, 1:9-22.
  • [59]Allendorf FW, Leary RF, Spruell P, Wenburg JK: The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 2001, 16:613-622.
  • [60]Ellstrand NC, Schierenbeck K: Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 2000, 97:7043-7050.
  • [61]Lexer C, Welch ME, Raymond O, Rieseberg LH: The origin of ecological divergence in Helianthus paradoxus (Asteraceae): selection on transgressive characters in a novel hybrid habitat. Evolution 2003, 57:1989-2000.
  • [62]Gross BL, Schwarzbach AE, Rieseberg LH: Origin(s) of the diploid hybrid species Helianthus deserticola (Asteraceae). Am J Bot 2003, 90:1708-1719.
  • [63]Ennos RA, French GC, Hollingsworth PM: Conserving taxonomic complexity. TREE 2005, 20:164-168.
  • [64]Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK: Considering evolutionary processes in conservation biology. Trends Ecol Evol 2000, 15:290-295.
  • [65]Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M: AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 1995, 23:4407-4414.
  • [66]Taberlet P, Gielly L, Pautou G, Bouvet J: Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 1991, 17:1105-1109.
  • [67]Shaw J, Lickey E, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL: The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 2005, 92:142-166.
  • [68]CBOL Plant Working Group: A DNA barcode for land plants. Proc Natl Acad Sci USA 2009, 106:12794-12797.
  • [69]Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P: How to track and assess genotyping errors in population genetics studies. Mol Ecol 2004, 13:3261-3273.
  • [70]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [71]Anderson EC, Thompson EA: A model-based method for identifying species hybrids using multilocus genetic data. Genetics 2002, 160:1217-1229.
  • [72]Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23:1801-1806.
  • [73]Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW: Genetic structure of human populations. Science 2002, 298:2381-2385.
  • [74]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis. 1999. Available at http://www.mbio.ncsu.edu/BioEdit/ bioedit.html webcite
  • [75]Rozas J, Rozas R: DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 1999, 15:174-175.
  • [76]Clement M, Posada D, Crandall K: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1660.
  • [77]Alvarez-Pardo VM, Ferreira AG, Nunes VF: Seed disinfestation methods for in vitro cultivation of epiphyte orchids from Southern Brazil. Hortic Bras 2006, 24:217-220.
  • [78]Suzuki RM, Moreira VC, Pescador R, Ferreira WM: Asymbiotic seed germination and in vitro seedling development of the threatened orchid Hoffmannseggella cinnabarina. In Vitro Cell Dev Biol Plant 2012, 48:500-511.
  • [79]Scopece G, Musacchio A, Widmer A, Cozzolino S: Patterns of reproductive isolation in Mediterranean deceptive orchids. Evolution 2007, 61:2623-2642.
  • [80]Phillips SJ, Anderson RP, Schapire RE: Maximum entropy modeling of species geographic distributions. Ecol Model 2006, 190:231-259.
  • [81]Sérgio C, Figueira R, Draper D, Menezes R, Sousa J: The use of herbarium data for the assessment of red list categories: Modelling bryophyte distribution based on ecological information. Biol Cons 2007, 135:341-351.
  • [82]Elith J, Graham CH, Anderson RP, Dudık M, Ferrier S, Guisan A, Hijmans R, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE: Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29:129-151.
  • [83]Gibson L, Barrett B, Burbidge AH: Dealing with uncertain absences in habitat modelling: a case study of a rare ground-dwelling parrot. Divers Distrib 2007, 13:704-713.
  • [84]Pearson RG, Thuiller W, Araújo MB, Martínez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC: Model-based uncertainty in species’ range prediction. J Biogeogr 2006, 33:1704-1711.
  • [85]Nakicenovic N: Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, 2000. Cambridge: Cambridge University Press; 2000.
  • [86]Greaves RK, Sanderson RA, Rushton SP: Predicting species occurrence using information-theoretic approaches and significance testing: an example of dormouse distribution in Cumbria, UK. Biol Conser 2006, 130:239-250.
  • [87]Milne D, Fisher JA, Paver A: Models of the habitat associations and distributions of insectivorous bats of the Top End of the Northern Territory, Australia. Biol Cons 2006, 130:370-385.
  • [88]Jiménez-Alfaro B, Draper D, Nogués-Bravo D: Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates. Biol Conser 2012, 147:190-196.
  文献评价指标  
  下载次数:24次 浏览次数:15次