期刊论文详细信息
BMC Microbiology
Quorum sensing modulates colony morphology through alkyl quinolones in Pseudomonas aeruginosa
Martin Schuster1  Rashmi Gupta1 
[1] Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
关键词: Biofilm;    Exopolysaccharide;    Acyl-homoserine lactone;    Alkylquinolone;    Colony;    Pseudomonas aeruginosa;    Quorum sensing;   
Others  :  1222019
DOI  :  10.1186/1471-2180-12-30
 received in 2011-07-07, accepted in 2012-03-09,  发布年份 2012
PDF
【 摘 要 】

Background

Acyl-homoserine lactone (acyl-HSL) and alkyl quinolone (AQ) based quorum-sensing (QS) systems are important for Pseudomonas aeruginosa virulence and biofilm formation. The effect of QS on biofilm formation is influenced by various genetic and environmental factors. Here, we used a colony biofilm assay to study the effect of the central acyl-HSL QS regulator, LasR, on biofilm formation and structure in the representative clinical P. aeruginosa isolate ZK2870.

Results

A lasR mutant exhibited wrinkled colony morphology at 37°C in contrast to the smooth colony morphology of the wild-type. Mutational analysis indicated that wrinkling of the lasR mutant is dependent on pel, encoding a biofilm matrix exopolysaccharide. Suppressor mutagenesis and complementation analysis implicated the AQ signaling pathway as the link between las QS and colony morphology. In this pathway, genes pqsA-D are involved in the synthesis of 4-hydroxyalkyl quinolines ("Series A congeners"), which are converted to 3,4-dihydroxyalkyl quinolines ("Series B congeners", including the well-characterized Pseudomonas Quinolone Signal, PQS) by the product of the LasR-dependent pqsH gene. Measurement of AQ in the wild-type, the lasR pqsA::Tn suppressor mutant as well as the defined lasR, pqsH, and lasR pqsH mutants showed a correlation between 4-hydroxyalkyl quinoline levels and the degree of colony wrinkling. Most importantly, the lasR pqsH double mutant displayed wrinkly morphology without producing any 3,4-dihydroxyalkyl quinolines. Constitutive expression of pqsA-D genes in a lasR pqsR::Tnmutant showed that colony wrinkling does not require the AQ receptor PqsR.

Conclusions

Taken together, these results indicate that the las QS system represses Pel and modulates colony morphology through a 4-hydroxyalkyl quinoline in a PqsR-independent manner, ascribing a novel function to an AQ other than PQS in P. aeruginosa.

【 授权许可】

   
2012 Gupta and Schuster; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804193042465.pdf 5062KB PDF download
Figure 8. 33KB Image download
Figure 7. 44KB Image download
Figure 6. 8KB Image download
Figure 5. 62KB Image download
Figure 4. 100KB Image download
Figure 3. 58KB Image download
Figure 2. 111KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Kerr KG, Snelling AM: Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 2009, 73(4):338-344.
  • [2]Fux CA, Costerton JW, Stewart PS, Stoodley P: Survival strategies of infectious biofilms. Trends Microbiol 2005, 13(1):34-40.
  • [3]Branda SS, Vik S, Friedman L, Kolter R: Biofilms: the matrix revisited. Trends Microbiol 2005, 13(1):20-26.
  • [4]Shapiro JA: The Use of Mudlac Transposons as Tools for Vital Staining to Visualize Clonal and Non-Clonal Patterns of Organization in Bacterial-Growth on Agar Surfaces. J Gen Microbiol 1984, 130(1):1169-1181.
  • [5]Hickman JW, Tifrea DF, Harwood CS: A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 2005, 102(40):14422-14427.
  • [6]Sakuragi Y, Kolter R: Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 2007, 189(14):5383-5386.
  • [7]Karatan E, Watnick P: Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009, 73(2):310-347.
  • [8]Gilbert KB, Kim TH, Gupta R, Greenberg EP, Schuster M: Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 2009, 73(6):1072-1085.
  • [9]Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ: Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 2004, 186(14):4466-4475.
  • [10]Matsukawa M, Greenberg EP: Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 2004, 186(14):4449-4456.
  • [11]Friedman L, Kolter R: Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 2004, 51(2):675-690.
  • [12]Friedman L, Kolter R: Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 2004, 186(14):4457-4465.
  • [13]Ma LY, Lu HP, Sprinkle A, Parsek MR, Wozniak DJ: Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 2007, 189(22):8353-8356.
  • [14]Schuster M, Greenberg EP: A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 2006, 296(2-3):73-81.
  • [15]Juhas M, Eberl L, Tummler B: Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 2005, 7(4):459-471.
  • [16]Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A: A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 1996, 21(6):1137-1146.
  • [17]Pesci EC, Pearson JP, Seed PC, Iglewski BH: Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997, 179(10):3127-3132.
  • [18]Diggle SP, Cornelis P, Williams P, Camara M: 4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 2006, 296(2-3):83-91.
  • [19]Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M: Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 2011, 35(2):247-274.
  • [20]Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG: Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 2004, 101(5):1339-1344.
  • [21]Xiao GP, Deziel E, He JX, Lepine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE, Rahme LG: MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 2006, 62(6):1689-1699.
  • [22]Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC: Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 2005, 187(13):4372-4380.
  • [23]Fletcher MP, Diggle SP, Camara M, Williams P: Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nat Protoc 2007, 2(5):1254-1262.
  • [24]Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C: Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 2002, 184(23):6472-6480.
  • [25]Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P: The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 2003, 50(1):29-43.
  • [26]McGrath S, Wade DS, Pesci EC: Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). Fems Microbiol Lett 2004, 230(1):27-34.
  • [27]Xiao G, He J, Rahme LG: Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCD gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 2006, 152(Pt 6):1679-1686.
  • [28]Lepine F, Dekimpe V, Lesic B, Milot S, Lesimple A, Mamer OA, Rahme LG, Deziel E: PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by Pseudomonas aeruginosa and Burkholderia thailandensis. Biol Chem 2007, 388(8):839-845.
  • [29]Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, et al.: Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003, 22(15):3803-3815.
  • [30]Deziel E, Gopalan S, Tampakaki AP, Lepine F, Padfield KE, Saucier M, Xiao G, Rahme LG: The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasR, rhlR or the production of N-acyl-L-homoserine lactones. Mol Microbiol 2005, 55(4):998-1014.
  • [31]Schuster M, Lostroh CP, Ogi T, Greenberg EP: Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 2003, 185(7):2066-2079.
  • [32]Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH: Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 2003, 185(7):2080-2095.
  • [33]Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP: The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998, 280(5361):295-298.
  • [34]Ueda A, Wood TK: Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 2009, 5(6):e1000483.
  • [35]Davey ME, Caiazza NC, O'Toole GA: Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 2003, 185(2):1027-1036.
  • [36]D'Argenio DA, Calfee MW, Rainey PB, Pesci EC: Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 2002, 184(23):6481-6489.
  • [37]Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T: A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 2006, 59(4):1114-1128.
  • [38]Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR: The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 2006, 62(5):1264-1277.
  • [39]Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM: Common virulence factors for bacterial pathogenicity in plants and animals. Science 1995, 268(5219):1899-1902.
  • [40]Holloway BW, Krishnapillai V, Morgan AF: Chromosomal genetics of Pseudomonas. Microbiol Rev 1979, 43(1):73-102.
  • [41]Wilder CN, Diggle SP, Schuster M: Cooperation and cheating in Pseudomonas aeruginosa: the roles of the las, rhl and pqs quorum-sensing systems. ISME J 2011, 5(8):1332-1343.
  • [42]Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM: An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 2006, 103(8):2833-2838.
  • [43]Simon R, UPAP : A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotech 1983, 1:784-791.
  • [44]Becher A, Schweizer HP: Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. Biotechniques 2000, 29(5):948-950-952.
  • [45]Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP: A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998, 212(1):77-86.
  • [46]Heeb S, Blumer C, Haas D: Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 2002, 184(4):1046-1056.
  • [47]Schweizer HP: Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 1991, 97(1):109-121.
  • [48]Horton RM, Cai ZL, Ho SN, Pease LR: Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 1990, 8(5):528-535.
  • [49]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [50]Whiteley M, Lee KM, Greenberg EP: Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1999, 96(24):13904-13909.
  • [51]Coic R, Kowalik T, Quarles JM, Stevenson B, K TR: Growing and analyzing biofilms in flow-cells. In Current Protocols in Microbiology. Volume 1. Wiley and Sons Inc.; New Jersey; 2006.
  • [52]Fox A, Haas D, Reimmann C, Heeb S, Filloux A, Voulhoux R: Emergence of secretion-defective sublines of Pseudomonas aeruginosa PAO1 resulting from spontaneous mutations in the vfr global regulatory gene. Appl Environ Microbiol 2008, 74(6):1902-1908.
  • [53]Larsen RA, Wilson MM, Guss AM, Metcalf WW: Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 2002, 178(2):193-201.
  • [54]Spiers AJ, Bohannon J, Gehrig SM, Rainey PB: Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 2003, 50(1):15-27.
  • [55]Dietrich LE, Teal TK, Price-Whelan A, Newman DK: Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 2008, 321(5893):1203-1206.
  • [56]Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GCL, Parsek MR: The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. Plos Pathog 2011, 7(1):e1001264.
  • [57]Chang WS, Halverson LJ: Reduced water availability influences the dynamics, development, and ultrastructural properties of Pseudomonas putida biofilms. J Bacteriol 2003, 185(20):6199-6204.
  • [58]Rampioni G, Pustelny C, Fletcher MP, Wright VJ, Bruce M, Rumbaugh KP, Heeb S, Camara M, Williams P: Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environ Microbiol 2010, 12(6):1659-1673.
  • [59]D'Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Deziel E, Smith EE, Nguyen H, Ernst RK, Larson Freeman TJ, Spencer DH, et al.: Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 2007, 64(2):512-533.
  • [60]Ha DG, Merritt JH, Hampton TH, Hodgkinson JT, Janecek M, Spring DR, Welch M, O'Toole GA: 2-Heptyl-4-Quinolone, a Precursor of the Pseudomonas Quinolone Signal Molecule, Modulates Swarming Motility in Pseudomonas aeruginosa. J Bacteriol 2011, 193(23):6770-6780.
  • [61]Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, Chhabra SR, Camara M, Williams P: Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 2006, 13(7):701-710.
  • [62]Hammer BK, Bassler BL: Quorum sensing controls biofilm formation in Vibrio cholera. Mol Microbiol 2003, 50(1):101-104.
  • [63]Boles BR, Horswill AR: Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 2008, 4(4):e1000052.
  • [64]Lepine F, Milot S, Deziel E, He JX, Rahme LG: Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectr 2004, 15(6):862-869.
  • [65]Haussler S, Becker T: The Pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 2008, 4(9):e1000166.
  • [66]Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, Brandenburg K, Whiteley M: Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 2008, 69(2):491-502.
  • [67]Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C, Molin S, Bleves S, Lazdunski A, Lory S, Filloux A: Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA 2006, 103(1):171-176.
  • [68]Brencic A, Lory S: Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 2009, 72(2):612-632.
  文献评价指标  
  下载次数:50次 浏览次数:20次