| BMC Evolutionary Biology | |
| Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming | |
| Anthony I Cognato2  Bjarte H Jordal1  | |
| [1] Natural History Museum, University Museum of Bergen, NO-5020, Bergen, Norway;Department of Entomology, Michigan State University, 243 Natural Science Bldg, East Lansing, MI, 48824, USA | |
| 关键词: Evolutionary origins; Bark and ambrosia beetles; Molecular phylogeny; Symbiosis; Agriculture; | |
| Others : 1140664 DOI : 10.1186/1471-2148-12-133 |
|
| received in 2012-03-28, accepted in 2012-07-16, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Fungus farming is an unusual life style in insects that has evolved many times in the wood boring weevils named ‘ambrosia beetles’. Multiple occurrences of this behaviour allow for a detailed comparison of the different origins of fungus farming through time, its directionality, and possible ancestral states. We tested these hypotheses with a phylogeny representing the largest data set to date, nearly 4 kb of nucleotides from COI, EF-1α, CAD, ArgK, 28S, and 200 scolytine taxa.
Results
Phylogenetic analyses using Bayesian or parsimony approaches placed the root of Scolytinae close to the tribe Scolytini and Microborus, but otherwise indicated low resolution at older nodes. More recent clades were well resolved, including ten origins of fungus farming. There were no subsequent reversals to bark or phloem feeding in the fungus farming clades. The oldest origin of fungus farming was estimated near 50 Ma, long after the origin of Scolytinae (100-120 Ma). Younger origins included the species rich Xyleborini, dated to 21 Ma. Sister group comparisons and test of independence between traits indicated that neither gregarious larval feeding nor regular inbreeding by sibling mating was strongly correlated with the origin of fungus farming.
Conclusion
Origins of fungus farming corresponded mainly with two periods of global warming in the Cenozoic era, which were characterised by broadly distributed tropical forests. Hence, it seems likely that warm climates and expanding tropical angiosperm forests played critical roles in the successful radiation of diverse fungus farming groups. However, further investigation will likely reveal additional biological factors that promote fungus farming.
【 授权许可】
2012 Jordal and Cognato; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150325074920319.pdf | 537KB | ||
| Figure 2. | 49KB | Image | |
| Figure 1. | 135KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Jordal BH: Scolytinae. In Handbook of Zoology, Band IV Arthropoda: Insecta Part 38: Coleoptera, Beetles, V. Edited by Beutel R, Leschen R. Berlin: deGruyter Press; 2012. in press
- [2]Oberprieler RG, Marvaldi AE, Anderson RS: Weevils, weevils, weevils everywhere. Zootaxa 2007, 1668:491-520.
- [3]Browne FG: Some aspects of host selection among ambrosia beetles in the humid tropics of south-east Asia. Malayan Forestry 1958, 21:164-182.
- [4]Browne FG: The biology of Malayan Scolytidae and Platypodidae. Malayan Forest Records 1961, 22:1-255.
- [5]Schedl KE: Breeding habits of arboricole insects in Central Africa. Xth International Congress of Entomology, Montreal, Proceedings 1956, 183-197.
- [6]Scott JJ, Oh D-C, Yuceer MC, Klepzig KD, Clardy J, Currie CR: Bacterial protection of beetle-fungus mutualism. Science 2008, 322(5898):63.
- [7]Hulcr J, Adams A, Raffa K, Hofstetter R, Klepzig K, Currie C: Presence and diversity of streptomyces in dendroctonus and sympatric bark beetle galleries across north america. Microbial Ecology 2011, 61(4):759-768.
- [8]Beaver RA: Insect - fungus relationships in the bark and ambrosia beetles. In Insect - fungus interactions. Edited by Wilding N, Collins NM, Hammond PM, Webber JF. London: Academic; 1989:121-143.
- [9]Hulcr J, Dunn RR: The sudden emergence of pathogenicity in insect–fungus symbioses threatens naive forest ecosystems. Proceedings of the Royal Society B: Biological Sciences 2011, 278:2866-2873.
- [10]Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Frà , slev T, Rosendahl S, Boomsma JJ: The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences 2002, 99(23):14887-14892.
- [11]Mueller UG, Rehner SA, Schultz TR: The evolution of agriculture in ants. Science 1998, 281:2034-2038.
- [12]Schultz TR, Brady SG: Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Sciences 2008, 105(14):5435-5440.
- [13]Jordal BH, Sequeira AS, Cognato AI: The age and phylogeny of wood boring weevils and the origin of subsociality. Molecular Phylogenetics and Evolution 2011, 59:708-724.
- [14]Jordal BH: Platypodinae. In Handbook of Zoology, Band IV Arthropoda: Insecta Part 38: Coleoptera, Beetles, V. Edited by Beutel R, Leschen R. Berlin: deGruyter Press; 2012. in press
- [15]Kok LT, Norris DM, Chu HM: Sterol metabolism as a basis for a mutualistic symbiosis. Nature 1970, 225:661-662.
- [16]Bentz BJ, Six DL: Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). Annals of the Entomological Society of America 2006, 99(2):189-194.
- [17]Six DL, Paine TD: Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Annals of the Entomological Society of America 1998, 27(6):1393-1401.
- [18]Farrell BD, Sequeira A, O’Meara B, Normark BB, Chung J, Jordal B: The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 2001, 55(10):2011-2027.
- [19]Kirkendall LR: Ecology and evolution of biased sex ratios in bark and ambrosia beetles. In Evolution and diversity of sex ratio: insects and mites. Edited by Wrensch DL, Ebbert MA. New York: Chapman and Hall; 1993:235-345.
- [20]Kirkendall LR, Kent DS, Raffa KA: Interactions between males, females and offspring in bark and ambrosia beetles: the significance of living in tunnels for the evolution of social behaviour. In Social behaviour in insects and arachnids. Edited by Crespi BJ, Choe JC. Cambridge: Cambridge University Press; 1997:181-215.
- [21]Kirkendall LR: The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypotidae). Zoological Journal of the Linnean Society 1983, 77:293-352.
- [22]Cognato AI, Grimaldi D: 100 million years of morphological conservation in bark beetles (Coleoptera: Curculionidae: Scolytinae). Systematic Entomology 2009, 34:93-100.
- [23]Kirejtshuk AG, Azar D, Beaver RA, Mandelshtam MY, Nel A: The most ancient bark beetle known: a new tribe, genus and species from Lebanese amber (Coleoptera, Curculionidae, Scolytinae). Systematic Entomology 2009, 34:101-112.
- [24]Santos MFDEA, Mermudes JRM, Fonseca VMMD: A specimen of Curculioninae (Curculionidae, Coleoptera) from the Lower Cretaceous, Araripe Basin, north-eastern Brazil. Palaeontology 2011, 54(4):807-814.
- [25]Wood SL, Bright D: A catalog of Scolytidae and Platypodidae (Coleoptera). Part 2: taxonomic index. Great Basin Naturalist Memoirs 1992, 13:1-1553.
- [26]Pagel M: Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London series B 1994, 255:37-45.
- [27]Mueller UG, Gerardo N: Fungus farming insects: multiple origins and diverse evolutionary histories. Proceedings of the National Acedemy of Science USA 2002, 99(24):15247-15249.
- [28]Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR: The evolution of agriculture in insects. Annual Review of Ecology, Evolution, and Systematics 2005, 36(1):563-595.
- [29]Smith SM, Cognato AI: A taxonomic revision of Camptocerus Dejean (Coleoptera: Curculionidae: Scolytinae). Insecta Mundi 2010, 148:1-88.
- [30]Alamouti SM, Tsui CKM, Breuil C: Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycological Research 2009, 113:822-835.
- [31]Beaver RA: Host specificity of temperate and tropical animals. Nature 1979, 281:139-141.
- [32]Couvreur T, Forest F, Baker W: Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biology 2011, 9(1):1-12. BioMed Central Full Text
- [33]Merckx V, Chatrou L, Lemaire B, Sainge M, Huysmans S, Smets E: Diversification of myco-heterotrophic angiosperms: evidence from Burmanniaceae. BMC Evolutionary Biology 2008, 8(1):1-16. BioMed Central Full Text
- [34]Graham A: The age and diversification of terrestrial new world ecosystems through Cretaceous and Cenozoic time. American Journal of Botany 2011, 98(3):336-351.
- [35]Morley RJ: Origin and Evolution of Tropical Rain Forests. New York: Wiley; 2000.
- [36]Zachos J, Pagani M, Sloan L, Thomas E, Billups K: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292(5517):686-693.
- [37]Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE: Phylogeny of the Ants: Diversification in the Age of Angiosperms. Science 2006, 312(5770):101-104.
- [38]Vieites DR, Min M-S, Wake DB: Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proceedings of the National Academy of Sciences 2007, 104(50):19903-19907.
- [39]Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A: The delayed rise of present-day mammals. Nature 2007, 446(7135):507-512.
- [40]Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G: Diversification of Neoaves: integration of molecular sequence data and fossils. Biology Letters 2006, 2(4):543-547.
- [41]Ward PS, Brady SG, Fisher BL, Schultz TR: Phylogeny and biogeography of dolichoderine ants: effects of data partitioning and relict taxa on historical inference. Systematic Biology 2010, 59(3):342-362.
- [42]Archibald SB, Bossert WH, Greenwood DR, Farrell BD: Seasonality, the latitudinal gradient of diversity, and eocene insects. Paleobiology 2010, 36(3):374-398.
- [43]Harrington GJ, Eberle J, Le-Page BA, Dawson M, Hutchison JH: Arctic plant diversity in the early eocene greenhouse. Proceedings of the Royal Society B: Biological Sciences 2011, 279:1515-1521.
- [44]Kuschel G, Leschen RAB, Zimmerman EC: Platypodidae under scrutiny. Invertebrate Taxonomy 2000, 14(6):771-805.
- [45]McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD: Temporal lags and overlap in the diversification of weevils and flowering plants. Proceedings of the National Academy of Science USA 2009, 106(17):7083-7088.
- [46]Davis Charles C, Webb Campbell O, Wurdack Kenneth J, Jaramillo Carlos A, Donoghue Michael J: Explosive radiation of malpighiales supports a mid‐cretaceous origin of modern tropical rain forests. The American Naturalist 2005, 65(3):E36-E65.
- [47]Nobre T, Koné NA, Konaté S, Linsenmair KE, Aanen DK: Dating the fungus-growing termites’ mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Molecular Ecology 2011, 20(12):2619-2627.
- [48]Aanen DK, Eggleton P: Fungus-growing termites originated in african rain forest. Current biology 2005, 15(9):851-855.
- [49]Jordal BH: Elongation Factor 1α resolves the monophyly of the haplodiploid ambrosia beetles Xyleborini (Coleoptera: Curculionidae). Insect Molecular Biology 2002, 11:453-465.
- [50]Jordal BH, Beaver RA, Normark BB, Farrell BD: Extraordinary sex ratios and the evolution of male neoteny in sib-mating Ozopemon beetles. Biological Journal of the Linnean Society 2002, 75:353-360.
- [51]Jordal BH, Normark BB, Farrell BD: Evolutionary radiation of an inbreeding haplodiploid beetle lineage (Curculionidae, Scolytinae). Biological Journal of the Linnean Society 2000, 71(3):483-499.
- [52]Normark BB, Jordal BH, Farrell BD: Origin of a haplodiploid beetle lineage. Proceedings of the Royal Society of London serie B 1999, 266:2253-2259.
- [53]Bright DE, Poinar GO: Scolytidae and Platypodidae (Coleoptera) from Dominican Republic amber. Annals of the Entomological Society of America 1994, 87(2):170-194.
- [54]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 2004, 32(5):1792-1797.
- [55]Jordal BH, Gillespie JJ, Cognato AI: Secondary structure alignment and direct optimization of 28S rDNA sequences provide limited phylogenetic resolution in bark and ambrosia beetles (Curculionidae: Scolytinae). Zoologica Scripta 2008, 37:1-14.
- [56]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogeny. Biometrics 2001, 17(8):754-755.
- [57]Swofford D: PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods) version 4. Massachusetts: Sinauer Associates, Sunderland; 2002.
- [58]Nylander JAA: Mr Model test. Version 2. Computer program distributed by the author. 2nd edition. Uppsala University: Evolutionary Biology Centre; 2004.
- [59]Baker RH, DeSalle R: Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Systematic Biology 1997, 46:645-673.
- [60]Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.74. Computer program distributed by the author, http://mesquiteproject.org webcite 2011
- [61]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 2007, 7:214-214. BioMed Central Full Text
- [62]Marvaldi AE, Sequeira AS, O’Brien CW, Farrell BD: Molecular and morphological phylogenetics of weevils (Coleoptera, Curculionoidea): do niche shifts accompany diversification? Systematic Biology 2002, 51(5):761-785.
PDF