期刊论文详细信息
BMC Genomics
Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.)
Huixian Zhao1  Xiangli Liu1  Jin Zhang1  Qian Wang1  Zhanjie Li1  Qing Chi1  Yan Yan1  Jinyang Lv1  Chao Jian1  Ran Han1 
[1] College of Life Sciences, Northwest A & F University, Yangling 712100, Shaanxi, China
关键词: miRNA target;    Expression profile;    Small RNA sequencing;    Seed development;    Flag leaf;    Triticum aestivum;    MicroRNA;   
Others  :  1217467
DOI  :  10.1186/1471-2164-15-289
 received in 2014-01-25, accepted in 2014-03-31,  发布年份 2014
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) regulate various biological processes in plants. Considerable data are available on miRNAs involved in the development of rice, maize and barley. In contrast, little is known about miRNAs and their functions in the development of wheat. In this study, five small RNA (sRNA) libraries from wheat seedlings, flag leaves, and developing seeds were developed and sequenced to identify miRNAs and understand their functions in wheat development.

Results

Twenty-four known miRNAs belonging to 15 miRNA families were identified from 18 MIRNA loci in wheat in the present study, including 15 miRNAs (9 MIRNA loci) first identified in wheat, 13 miRNA families (16 MIRNA loci) being highly conserved and 2 (2 MIRNA loci) moderately conserved. In addition, fifty-five novel miRNAs were also identified. The potential target genes for 15 known miRNAs and 37 novel miRNAs were predicted using strict criteria, and these target genes are involved in a wide range of biological functions. Four of the 15 known miRNA families and 22 of the 55 novel miRNAs were preferentially expressed in the developing seeds with logarithm (log2) of the fold change of 1.0 ~ 7.6, and half of them were seed-specific, suggesting that they participate in regulating wheat seed development and metabolism. From 5 days post-anthesis to 20 days post-anthesis, miR164 and miR160 increased in abundance in the developing seeds, whereas miR169 decreased, suggesting their coordinating functions in the different developmental stages of wheat seed. Moreover, 8 known miRNA families and 28 novel miRNAs exhibited tissue-biased expression in wheat flag leaves, with the logarithm of the fold changes of 0.1 ~ 5.2. The putative targets of these tissue-preferential miRNAs were involved in various metabolism and biological processes, suggesting complexity of the regulatory networks in different tissues. Our data also suggested that wheat flag leaves have more complicated regulatory networks of miRNAs than developing seeds.

Conclusions

Our work identified and characterised wheat miRNAs, their targets and expression patterns. This study is the first to elucidate the regulatory networks of miRNAs involved in wheat flag leaves and developing seeds, and provided a foundation for future studies on specific functions of these miRNAs.

【 授权许可】

   
2014 Han et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706200551295.pdf 1091KB PDF download
Figure 3. 171KB Image download
Figure 2. 93KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Cakir C, Gillespie ME, Scofield SR: Rapid determination of gene function by virus-induced gene silencing in wheat and barley. Crop Sci 2010, 50:S77-S84.
  • [2]Jinek M, Doudna JA: A three-dimensional view of the molecular machinery of RNA interference. Nature 2008, 457(7228):405-412.
  • [3]Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC: Expression of Arabidopsis MIRNA genes. Plant Physiol 2005, 138(4):2145-2154.
  • [4]Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23(20):4051-4060.
  • [5]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [6]Kurihara Y, Watanabe Y: Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 2004, 101(34):12753.
  • [7]Vazquez F, Gasciolli V, Crété P, Vaucheret H: The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 2004, 14(4):346-351.
  • [8]Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS: Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 2005, 102(10):3691.
  • [9]Voinnet O: Origin, biogenesis, and activity of plant microRNAs. Cell 2009, 136(4):669-687.
  • [10]Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 2004, 14(6):787-799.
  • [11]Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ: Elucidation of the small RNA component of the transcriptome. Science 2005, 309(5740):1567-1569.
  • [12]Mallory AC, Dugas DV, Bartel DP, Bartel B: MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Current Biol: CB 2004, 14(12):1035.
  • [13]Zhu QH, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C: A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 2008, 18(9):1456-1465.
  • [14]Lauter N, Kampani A, Carlson S, Goebel M, Moose SP: microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A 2005, 102(26):9412-9417.
  • [15]Sunkar R, Chinnusamy V, Zhu J, Zhu J-K: Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 2007, 12(7):301-309.
  • [16]Cuperus JT, Fahlgren N, Carrington JC: Evolution and functional diversification of MIRNA genes. Plant Cell Online 2011, 23(2):431-442.
  • [17]Axtell MJ, Snyder JA, Bartel DP: Common functions for diverse small RNAs of land plants. Plant Cell 2007, 19(6):1750-1769.
  • [18]Mallory AC, Bartel DP, Bartel B: MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell Online 2005, 17(5):1360-1375.
  • [19]Nodine MD, Bartel DP: MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 2010, 24(23):2678-2692.
  • [20]Xue LJ, Zhang JJ, Xue HW: Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res 2009, 37(3):916-930.
  • [21]Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, Xin P, Yan C, Chu J, Li HQ, Chen YQ: Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 2013, 31(9):848-852.
  • [22]Kang M, Zhao Q, Zhu D, Yu J: Characterization of microRNAs expression during maize seed development. BMC Genomics 2012, 13(1):360. BioMed Central Full Text
  • [23]Curaba J, Spriggs A, Taylor J, Li Z, Helliwell C: miRNA regulation in the early development of barley seed. BMC Plant Biol 2012, 12(1):120. BioMed Central Full Text
  • [24]Meng F, Liu H, Wang K, Liu L, Wang S, Zhao Y, Yin J, Li Y: Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC Plant Biol 2013, 13(1):140. BioMed Central Full Text
  • [25]Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q: Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 2007, 8(6):R96. BioMed Central Full Text
  • [26]Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu YQ, Vogel J, Jia J, Qi Y: Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genom 2009, 9(4):499-511.
  • [27]Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q: Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 2010, 10(1):123. BioMed Central Full Text
  • [28]Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C: Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol 2012, 159(2):721-738.
  • [29]Li YF, Zheng Y, Jagadeeswaran G, Sunkar R: Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches. Plant Sci 2013, 203:17-24.
  • [30]Bennett M, Smith J, Barclay I: Early seed development in the Triticeae. Phil Trans Roy Soc Lond B Biol Sci 1975, 272(916):199-227.
  • [31]Sabelli PA, Larkins BA: The development of endosperm in grasses. Plant Physiol 2009, 149(1):14-26.
  • [32]Xu JS, Zhao HY: Canopy photosynthesis capacity and the contribution from different organs in high-yielding winter wheat. Acta Agronomica Sinica 1995, 2:012.
  • [33]Sharma S, Sain R, Sharma R: The genetic control of flag leaf length in normal and late sown durum wheat. J Agric Sci 2003, 141:323-331.
  • [34]Rajagopalan R, Vaucheret H, Trejo J, Bartel DP: A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 2006, 20(24):3407-3425.
  • [35]Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS: Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol 2011, 11(1):5. BioMed Central Full Text
  • [36]Xia R, Zhu H, An Y, Beers EP, Liu Z: Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 2012, 13(6):R47. BioMed Central Full Text
  • [37]Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore RW, Dubcovsky J: Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 2010, 11(1):408. BioMed Central Full Text
  • [38]Slotkin RK, Martienssen R: Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 2007, 8(4):272-285.
  • [39]Schreiber AW, Shi BJ, Huang CY, Langridge P, Baumann U: Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics 2011, 12(1):129. BioMed Central Full Text
  • [40]Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J: Identification of grapevine microRNAs and their targets using high‒throughput sequencing and degradome analysis. Plant J 2010, 62(6):960-976.
  • [41]Yao YY, Sun QX: Exploration of small non coding RNAs in wheat (Triticum aestivum L.). Plant Mol Biol 2012, 80(1):67-73.
  • [42]Krol J, Sobczak K, Wilczynska U, Drath M, Jasinska A, Kaczynska D, Krzyzosiak WJ: Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem 2004, 279(40):42230-42239.
  • [43]Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V: Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 2005, 15(1):78-91.
  • [44]Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL: High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2007, 2(2):e219.
  • [45]Schmidt R, Stransky H, Koch W: The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta 2007, 226(4):805-813.
  • [46]D'Ovidio R, Masci S: The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci 2004, 39(3):321-339.
  • [47]Moura DS, Bergey DR, Ryan CA: Characterization and localization of a wound-inducible type I serine-carboxypeptidase from leaves of tomato plants (Lycopersicon esculentum Mill.). Planta 2001, 212(2):222-230.
  • [48]Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA: FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 2005, 309(5732):293-297.
  • [49]Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ: The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 2006, 133(2):251-261.
  • [50]Olsen AN, Ernst HA, Leggio LL, Skriver K: NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 2005, 10(2):79-87.
  • [51]Guo Y, Gan S: AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 2006, 46(4):601-612.
  • [52]Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J: A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314(5803):1298-1301.
  • [53]Siefers N, Dang KK, Kumimoto RW, Bynum WE, Tayrose G, Holt BF: Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol 2009, 149(2):625-641.
  • [54]Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP: F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 2007, 143(4):1467-1483.
  • [55]Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC: The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 2008, 15(4):354-363.
  • [56]Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, Chen KC, Lai EC: Widespread regulatory activity of vertebrate microRNA* species. RNA 2011, 17(2):312-326.
  • [57]Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li W: Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One 2012, 7(1):e29669.
  • [58]Devers EA, Branscheid A, May P, Krajinski F: Stars and symbiosis: microRNA-and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 2011, 156(4):1990-2010.
  • [59]Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C: Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5'Terminal Nucleotide. Cell 2008, 133(1):116-127.
  • [60]Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N: Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491(7426):705-710.
  • [61]Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P: Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie/Chemical Monthly 1994, 125(2):167-188.
  • [62]Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths JS, Jacobsen SE, Mallory AC, Martienssen RA, Poething RS, Qi YJ, Vaucheret H, Voinnet O, Watanabe Y, Weigel D: Criteria for annotation of plant MicroRNAs. Plant Cell 2008, 20(12):3186-3190.
  • [63]Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014, 42(D1):D68-D73.
  • [64]Taylor RS, Tarver JE, Hiscock SJ, Donoghue PC: Evolutionary history of plant microRNAs. Trends Plant Sci 2014, 19(3):175-182.
  • [65]AC’t Hoen P, Friedländer MR, Almlöf J, Sammeth M, Pulyakhina I, Anvar SY, Laros JF, Buermans HP, Karlberg O, Brännvall M: Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat Biotechnol 2013, 31(11):1015-1022.
  • [66]Shi R, Chiang VL: Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 2005, 39(4):519-525.
  • [67]Han R, Yan Y, Jian C, Zhao HX: Comparison of two miRNA quantification methods for assaying expression profiles of miRNAs in wheat (Triticum aestivum L.). J Integrative Agr 2014, 13(4):60345-60354.
  • [68]Beccari G, Covarelli L, Nicholson P: Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathol 2011, 60(4):671-684.
  • [69]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25(4):402-408.
  • [70]Zhang Y: miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 2005, 33:W701-W704.
  • [71]Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, Hofacker IL: Thermodynamics of RNA-RNA binding. Bioinformatics 2006, 22(10):1177-1182.
  • [72]Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. Nat Genet 2007, 39(10):1278-1284.
  • [73]Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O: Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008, 320(5880):1185-1190.
  文献评价指标  
  下载次数:13次 浏览次数:15次