期刊论文详细信息
BMC Cancer
Necdin modulates proliferative cell survival of human cells in response to radiation-induced genotoxic stress
Julie Lafontaine3  Guergana Tchakarska3  Francis Rodier1  Anne-Marie Mes-Masson2 
[1] Département de Radiologie, Radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, QC, H3C 3J7, Canada
[2] Département de médecine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
[3] Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Institut du cancer de Montréal, Y-4606, 1560, rue Sherbrooke Est, Montréal, QC, H2L 4 M1, Canada
关键词: IMR90;    Radioresistance;    Senescence;    p53;    Necdin;   
Others  :  1080373
DOI  :  10.1186/1471-2407-12-234
 received in 2011-07-22, accepted in 2012-05-23,  发布年份 2012
PDF
【 摘 要 】

Background

The finite replicative lifespan of cells, termed cellular senescence, has been proposed as a protective mechanism against the proliferation of oncogenically damaged cells, that fuel cancer. This concept is further supported by the induction of premature senescence, a process which is activated when an oncogene is expressed in normal primary cells as well as following intense genotoxic stresses. Thus, deregulation of genes that control this process, like the tumor suppressor p53, may contribute to promoting cancer by allowing cells to bypass senescence. A better understanding of the genes that contribute to the establishment of senescence is therefore warranted. Necdin interacts with p53 and is also a p53 target gene, although the importance of Necdin in the p53 response is not clearly understood.

Methods

In this study, we first investigated Necdin protein expression during replicative senescence and premature senescence induced by gamma irradiation and by the overexpression of oncogenic RasV12. Gain and loss of function experiments were used to evaluate the contribution of Necdin during the senescence process.

Results

Necdin expression declined during replicative aging of IMR90 primary human fibroblasts or following induction of premature senescence. Decrease in Necdin expression seemed to be a consequence of the establishment of senescence since the depletion of Necdin in human cells did not induce a senescence-like growth arrest nor a flat morphology or SA-β-galactosidase activity normally associated with senescence. Similarly, overexpression of Necdin did not affect the life span of IMR90 cells. However, we demonstrate that in normal human cells, Necdin expression mimicked the effect of p53 inactivation by increasing radioresistance.

Conclusion

This result suggests that Necdin potentially attenuate p53 signaling in response to genotoxic stress in human cells and supports similar results describing an inhibitory function of Necdin over p53-dependent growth arrest in mice.

【 授权许可】

   
2012 Lafontaine et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141203002832838.pdf 1082KB PDF download
Figure 6. 19KB Image download
Figure 5. 62KB Image download
Figure 4. 43KB Image download
Figure 3. 44KB Image download
Figure 2. 52KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Lane DP: Cancer. p53, guardian of the genome. Nature 1992, 358(6381):15-16.
  • [2]Reddel RR: The role of senescence and immortalization in carcinogenesis. Carcinogenesis 2000, 21(3):477-484.
  • [3]Campisi J: Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005, 120(4):513-522.
  • [4]Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE: Extension of life-span by introduction of telomerase into normal human cells. Science 1998, 279(5349):349-352.
  • [5]Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88(5):593-602.
  • [6]Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN: Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 1995, 92(10):4337-4341.
  • [7]Robles SJ, Adami GR: Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 1998, 16(9):1113-1123.
  • [8]Suzuki K, Mori I, Nakayama Y, Miyakoda M, Kodama S, Watanabe M: Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat Res 2001, 155(1 Pt 2):248-253.
  • [9]Shay JW, Pereira-Smith OM, Wright WE: A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 1991, 196(1):33-39.
  • [10]Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al.: A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995, 92(20):9363-9367.
  • [11]Brown JP, Wei W, Sedivy JM: Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 1997, 277(5327):831-834.
  • [12]He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al.: A microRNA component of the p53 tumour suppressor network. Nature 2007, 447(7148):1130-1134.
  • [13]de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP, Ferbeyre G, Lowe SW: PML is a direct p53 target that modulates p53 effector functions. Mol Cell 2004, 13(4):523-535.
  • [14]Lu X: Tied up in loops: positive and negative autoregulation of p53. Cold Spring Harb Perspect Biol 2010, 2(5):a000984.
  • [15]Liu Y, Elf SE, Miyata Y, Sashida G, Huang G, Di Giandomenico S, Lee JM, Deblasio A, Menendez S, Antipin J, et al.: p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 2009, 4(1):37-48.
  • [16]Lafontaine J, Rodier F, Ouellet V, Mes-Masson AM: Necdin, a p53-target gene, is an inhibitor of p53-mediated growth arrest. PLoS One 2012, 7(2):e31916.
  • [17]Hayashi Y, Matsuyama K, Takagi K, Sugiura H, Yoshikawa K: Arrest of cell growth by necdin, a nuclear protein expressed in postmitotic neurons. Biochem Biophys Res Commun 1995, 213(1):317-324.
  • [18]Taniura H, Taniguchi N, Hara M, Yoshikawa K: Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. J Biol Chem 1998, 273(2):720-728.
  • [19]Taniura H, Matsumoto K, Yoshikawa K: Physical and functional interactions of neuronal growth suppressor necdin with p53. J Biol Chem 1999, 274(23):16242-16248.
  • [20]Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombetta ES, et al.: Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 2004, 64(15):5270-5282.
  • [21]Tan AC, Jimeno A, Lin SH, Wheelhouse J, Chan F, Solomon A, Rajeshkumar NV, Rubio-Viqueira B, Hidalgo M: Characterizing DNA methylation patterns in pancreatic cancer genome. Mol Oncol 2009, 3(5–6):425-438.
  • [22]Crawford NP, Walker RC, Lukes L, Officewala JS, Williams RW, Hunter KW: The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival. Clin Exp Metastasis 2008, 25(4):357-369.
  • [23]Hasegawa K, Yoshikawa K: Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci 2008, 28(35):8772-8784.
  • [24]Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W: Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001, 107(2):137-148.
  • [25]Nichols WW, Murphy DG, Cristofalo VJ, Toji LH, Greene AE, Dwight SA: Characterization of a new human diploid cell strain, IMR-90. Science 1977, 196(4285):60-63.
  • [26]Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, Campisi J, Yaswen P, Cooper PK, Kaufman PD: A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One 2009, 4(8):e6529.
  • [27]Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009, 11(8):973-979.
  • [28]Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al.: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004, 303(5659):844-848.
  • [29]Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J: Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 2003, 22(16):4212-4222.
  • [30]Ossovskaya VS, Mazo IA, Chernov MV, Chernova OB, Strezoska Z, Kondratov R, Stark GR, Chumakov PM, Gudkov AV: Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc Natl Acad Sci USA 1996, 93(19):10309-10314.
  • [31]Zhu J, Woods D, McMahon M, Bishop JM: Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 1998, 12(19):2997-3007.
  • [32]Shih C, Weinberg RA: Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 1982, 29(1):161-169.
  • [33]Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW: Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003, 113(6):703-716.
  • [34]Mason DX, Jackson TJ, Lin AW: Molecular signature of oncogenic ras-induced senescence. Oncogene 2004, 23(57):9238-9246.
  • [35]Pandita TK, Richardson C: Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Res 2009, 37(5):1363-1377.
  • [36]Collado M, Blasco MA, Serrano M: Cellular senescence in cancer and aging. Cell 2007, 130(2):223-233.
  • [37]Dai CY, Enders GH: p16 INK4a can initiate an autonomous senescence program. Oncogene 2000, 19(13):1613-1622.
  • [38]Stein GH, Drullinger LF, Soulard A, Dulic V: Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 1999, 19(3):2109-2117.
  • [39]Lee CK, Klopp RG, Weindruch R, Prolla TA: Gene expression profile of aging and its retardation by caloric restriction. Science 1999, 285(5432):1390-1393.
  • [40]Shelton DN, Chang E, Whittier PS, Choi D, Funk WD: Microarray analysis of replicative senescence. Curr Biol 1999, 9(17):939-945.
  • [41]Helmbold H, Komm N, Deppert W, Bohn W: Rb2/p130 is the dominating pocket protein in the p53-p21 DNA damage response pathway leading to senescence. Oncogene 2009, 28(39):3456-3467.
  • [42]Kobayashi M, Taniura H, Yoshikawa K: Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells. J Biol Chem 2002, 277(44):42128-42135.
  • [43]Chan HM, Narita M, Lowe SW, Livingston DM: The p400 E1A-associated protein is a novel component of the p53 – > p21 senescence pathway. Genes Dev 2005, 19(2):196-201.
  • [44]Zhang W, Chan HM, Gao Y, Poon R, Wu Z: BS69 is involved in cellular senescence through the p53-p21Cip1 pathway. EMBO Rep 2007, 8(10):952-958.
  • [45]Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB: Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005, 123(3):437-448.
  • [46]Kim JE, Chen J, Lou Z: DBC1 is a negative regulator of SIRT1. Nature 2008, 451(7178):583-586.
  • [47]Ota H, Tokunaga E, Chang K, Hikasa M, Iijima K, Eto M, Kozaki K, Akishita M, Ouchi Y, Kaneki M: Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 2006, 25(2):176-185.
  • [48]Kuwako K, Taniura H, Yoshikawa K: Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. J Biol Chem 2004, 279(3):1703-1712.
  • [49]Chibuk TK, Bischof JM, Wevrick R: A necdin/MAGE-like gene in the chromosome 15 autism susceptibility region: expression, imprinting, and mapping of the human and mouse orthologues. BMC Genet 2001, 2:22. BioMed Central Full Text
  • [50]Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, Roeckel N, Taviaux S, Lefranc JL, Cau P, et al.: The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet 1997, 17(3):357-361.
  • [51]Kulaeva OI, Draghici S, Tang L, Kraniak JM, Land SJ, Tainsky MA: Epigenetic silencing of multiple interferon pathway genes after cellular immortalization. Oncogene 2003, 22(26):4118-4127.
  • [52]Wilson VL, Jones PA: DNA methylation decreases in aging but not in immortal cells. Science 1983, 220(4601):1055-1057.
  • [53]Singhal RP, Mays-Hoopes LL, Eichhorn GL: DNA methylation in aging of mice. Mech Ageing Dev 1987, 41(3):199-210.
  • [54]Goldstein JC, Rodier F, Garbe JC, Stampfer MR, Campisi J: Caspase-independent cytochrome c release is a sensitive measure of low-level apoptosis in cell culture models. Aging Cell 2005, 4(4):217-222.
  • [55]Rodier F, Campisi J, Bhaumik D: Two faces of p53: aging and tumor suppression. Nucleic Acids Res 2007, 35(22):7475-7484.
  • [56]Deponti D, Francois S, Baesso S, Sciorati C, Innocenzi A, Broccoli V, Muscatelli F, Meneveri R, Clementi E, Cossu G, et al.: Necdin mediates skeletal muscle regeneration by promoting myoblast survival and differentiation. J Cell Biol 2007, 179(2):305-319.
  • [57]Sciorati C, Touvier T, Buono R, Pessina P, Francois S, Perrotta C, Meneveri R, Clementi E, Brunelli S: Necdin is expressed in cachectic skeletal muscle to protect fibers from tumor-induced wasting. J Cell Sci 2009, 122(Pt 8):1119-1125.
  • [58]Ogawa R, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Mori Y, Mori R, Tomoda K, Katada T, Harada K, et al.: Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysis. Dis Esophagus 2008, 21(4):288-297.
  文献评价指标  
  下载次数:60次 浏览次数:19次