| BMC Genomics | |
| A novel Schistosoma japonicum endonuclease homologous to DNase II | |
| Qijun Chen2  Yan Xiao1  Shuai Liu1  Chuang Wu1  Pengfei Cai1  Xianyu Piao1  Nan Hou1  | |
| [1] MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dong Dan San Tiao 9, Beijing, People’s Republic of China;Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Xi An Da Lu 5333, Changchun, People’s Republic of China | |
| 关键词: Host–parasite interaction; DNase II homologue; Nuclease; Schistosoma japonicum; | |
| Others : 1137000 DOI : 10.1186/s12864-015-1319-5 |
|
| received in 2014-03-31, accepted in 2015-02-04, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Recent advances in studies of the Schistosoma japonicum genome have opened new avenues for the elucidation of parasite biology and the identification of novel targets for vaccines, drug development and early diagnostic tools.
Results
In this study, we surveyed the S. japonicum genome database for genes encoding nucleases. A total of 130 nucleases of 3 classes were found. Transcriptional analysis of these genes using a genomic DNA microarray revealed that the majority of the nucleases were differentially expressed in parasites of different developmental stages or different genders, whereas no obvious transcriptional variation was detected in parasites from different hosts. Further analysis of the putative DNases of S. japonicum revealed a novel DNase II homologue (Sjda) that contained a highly conserved catalytic domain. A recombinant Sjda-GST protein efficiently hydrolysed genomic DNA in the absence of divalent iron. Western-blot and immunofluorescence assays showed that Sjda was mainly expressed on the teguments of female adult parasites and induced early humoral immune responses in infected mice.
Conclusions
A novel DNase II homologue, Sjda, was identified in S. japonicum. Sjda was mainly distributed on the teguments of adult female parasites and possessed a typical divalent iron-independent DNA catalytic activity. This protein may play an important role in the host–parasite interaction.
【 授权许可】
2015 Hou et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150314023241677.pdf | 2564KB | ||
| Figure 7. | 33KB | Image | |
| Figure 6. | 38KB | Image | |
| Figure 5. | 18KB | Image | |
| Figure 4. | 202KB | Image | |
| Figure 3. | 57KB | Image | |
| Figure 2. | 101KB | Image | |
| Figure 1. | 38KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J: Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 2006, 6(7):411-25.
- [2]Ismail M, Botros S, Metwally A, William S, Farghally A, Tao LF, et al.: Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am J Trop Med Hyg 1999, 60(6):932-5.
- [3]McManus DP: Prospects for development of a transmission blocking vaccine against Schistosoma japonicum. Parasite Immunol 2005, 27(7–8):297-308.
- [4]Liu F, Lu J, Hu W, Wang SY, Cui SJ, Chi M, et al.: New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog 2006, 2(4):e29.
- [5]Hu W, Yan Q, Shen DK, Liu F, Zhu ZD, Song HD, et al.: Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet 2003, 35(2):139-47.
- [6]Liu F, Chen P, Cui SJ, Wang ZQ, Han ZG: SjTPdb: integrated transcriptome and proteome database and analysis platform for Schistosoma japonicum. BMC Genomics 2008, 9:304. BioMed Central Full Text
- [7]Ghildiyal M, Zamore PD: Small silencing RNAs: an expanding universe. Nat Rev Genet 2009, 10(2):94-108.
- [8]Yang W: Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 2010, 44(1):1-93.
- [9]Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, et al.: DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 2006, 16(4):396-400.
- [10]Midon M, Schafer P, Pingoud A, Ghosh M, Moon AF, Cuneo MJ, et al.: Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae. Nucleic Acids Res 2010, 39(2):623-34.
- [11]Chang A, Khemlani A, Kang H, Proft T: Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor. Mol Microbiol 2011, 79(6):1629-42.
- [12]Tseng CW, Kyme PA, Arruda A, Ramanujan VK, Tawackoli W, Liu GY: Innate immune dysfunctions in aged mice facilitate the systemic dissemination of methicillin-resistant S. aureus. PLoS One 2012, 7(7):e41454.
- [13]Brogden G, von Kockritz-Blickwede M, Adamek M, Reuner F, Jung-Schroers V, Naim HY, Steinhagen D: Beta-Glucan protects neutrophil extracellular traps against degradation by Aeromonas hydrophila in carp (Cyprinus carpio). Fish Shellfish Immunol 2012, 33(4):1060-4.
- [14]Liu MF, Wu XP, Wang XL, Yu YL, Wang WF, Chen QJ, et al.: The functions of Deoxyribonuclease II in immunity and development. DNA Cell Biol 2008, 27(5):223-8.
- [15]Krautz-Peterson G, Skelly PJ: Schistosoma mansoni: the dicer gene and its expression. Exp Parasitol 2008, 118(1):122-8.
- [16]Baker KP, Baron WF, Henzel WJ, Spencer SA: Molecular cloning and characterization of human and murine DNase II. Gene 1998, 215(2):281-9.
- [17]Shiokawa D, Tanuma S: Cloning of cDNAs encoding porcine and human DNase II. Biochem Biophys Res Commun 1998, 247(3):864-9.
- [18]Krieser RJ, Eastman A: The cloning and expression of human deoxyribonuclease II: a possible role in apoptosis. J Biol Chem 1998, 273(47):30909-14.
- [19]Evans CJ, Aguilera RJ: DNase II: genes, enzymes and function. Gene 2003, 322:1-15.
- [20]MacLea KS, Krieser RJ, Eastman A: A family history of deoxyribonuclease II: surprises from Trichinella spiralis and Burkholderia pseudomallei. Gene 2003, 305(1):1-12.
- [21]Zhang M, Hong Y, Han Y, Han H, Peng J, Qiu C, et al.: Proteomic analysis of tegument-exposed proteins of female and male Schistosoma japonicum worms. J Proteome Res 2013, 12(11):5260-70.
- [22]Cui J, Liu RD, Wang L, Zhang X, Jiang P, Liu MY, et al.: Proteomic analysis of surface proteins of Trichinella spiralis muscle larvae by two-dimensional gel electrophoresis and mass spectrometry. Parasit Vectors 2013, 6:355. BioMed Central Full Text
- [23]Wang L, Cui J, Hu DD, Liu RD, Wang ZQ: Identification of early diagnostic antigens from major excretory-secretory proteins of Trichinella spiralis muscle larvae using immunoproteomics. Parasit Vectors 2014, 7:40. BioMed Central Full Text
- [24]Dalton JP, Day SR, Drew AC, Brindley PJ: A method for the isolation of schistosome eggs and miracidia free of contaminating host tissues. Parasitology 1997, 115(Pt 1):29-32.
- [25]Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium: The Schistosoma japonicum genome reveals features of host-parasite interplay Nature 2009, 460(7253):345-51.
- [26]Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al.: The genome of the blood fluke Schistosoma mansoni. Nature 2009, 460(7253):352-8.
- [27]Piao X, Cai P, Liu S, Hou N, Hao L, Yang F, et al.: Global expression analysis revealed novel gender-specific gene expression features in the blood fluke parasite Schistosoma japonicum. PLoS One 2011, 6(4):e18267.
- [28]Liu S, Cai P, Hou N, Piao X, Wang H, Hung T, et al.: Genome-wide identification and characterization of a panel of house-keeping genes in Schistosoma japonicum. Mol Biochem Parasitol 2012, 182(1–2):75-82.
- [29]Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, et al.: CDD: a conserved domain database for protein classification. Nucleic Acids Res 2005, 33(Database issue):D192-6.
- [30]Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH: CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 2002, 30(1):281-3.
- [31]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al.: The Pfam protein families database. Nucleic Acids Res 2011, 40(Database issue):D290-301.
- [32]Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, et al.: Pfam: clans, web tools and services. Nucleic Acids Res 2006, 34(Database issue):D247-51.
- [33]Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P: SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 2006, 34(Database issue):D257-60.
- [34]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al.: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41. BioMed Central Full Text
- [35]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-10.
- [36]Haft DH, Selengut JD, White O: The TIGRFAMs database of protein families. Nucleic Acids Res 2003, 31(1):371-3.
- [37]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52(5):696-704.
PDF