期刊论文详细信息
BMC Genomics
Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes
Qingyu Wu3  Junbiao Dai3  Xi He3  Dong Yan3  Yue Shen2  Yun Wang2  Chunfang Gao1 
[1] Department of Criminal Science and Technology, People’s Public Security University of China, Beijing 100038, China;BGI-Shenzhen, Shenzhen 518083, China;MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
关键词: Lipid;    Transcriptome;    Hexose-proton symporter;    Oil accumulation;    Proteomic;    Genome sequence;    Chlorella protothecoides;    Microalgae;   
Others  :  856555
DOI  :  10.1186/1471-2164-15-582
 received in 2013-12-29, accepted in 2014-07-01,  发布年份 2014
PDF
【 摘 要 】

Background

Microalgae-derived biodiesel is a promising substitute for conventional fossil fuels. In particular, the green alga Chlorella protothecoides sp. 0710 is regarded as one of the best candidates for commercial manufacture of microalgae-derived biofuel. This is due not only to its ability to live autotrophically through photosynthesis, but also to its capacity to produce a large amount of biomass and lipid through fermentation of glucose. However, until the present study, neither its genome sequence nor the platform required for molecular manipulations were available.

Results

We generated a draft genome for C. protothecoides, and compared its genome size and gene content with that of Chlorella variabilis NC64A and Coccomyxa subellipsoidea C-169. This comparison revealed that C. protothecoides has a reduced genome size of 22.9 Mbp, about half that of its close relatives. The C. protothecoides genome encodes a smaller number of genes, fewer multi-copy genes, fewer unique genes, and fewer genome rearrangements compared with its close relatives. In addition, three Chlorella-specific hexose-proton symporter (HUP)-like genes were identified that enable the consumption of glucose and, consequently, heterotrophic growth. Furthermore, through comparative transcriptomic and proteomic studies, we generated a global perspective regarding the changes in metabolic pathways under autotrophic and heterotrophic growth conditions. Under heterotrophic conditions, enzymes involved in photosynthesis and CO2 fixation were almost completely degraded, either as mRNAs or as proteins. Meanwhile, the cells were not only capable of quickly assimilating glucose but also showed accelerated glucose catabolism through the upregulation of glycolysis and the tricarboxylic acid (TCA) cycle. Moreover, the rapid synthesis of pyruvate, upregulation of most enzymes involved in fatty acid synthesis, and downregulation of enzymes involved in fatty acid degradation favor the synthesis of fatty acids within the cell.

Conclusions

Despite similarities to other Chlorella, C. protothecoides has a smaller genome than its close relatives. Genes involved in glucose utilization were identified, and these genes explained its ability to grow heterotrophically. Transcriptomic and proteomic results provided insight into its extraordinary ability to accumulate large amounts of lipid. The C. protothecoides draft genome will promote the use of this species as a research model.

【 授权许可】

   
2014 Gao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723032806685.pdf 1051KB PDF download
71KB Image download
127KB Image download
59KB Image download
65KB Image download
【 图 表 】

【 参考文献 】
  • [1]Halim R, Danquah MK, Webley PA: Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 2012, 30:709-732.
  • [2]Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG: Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 2010, 21:277-286.
  • [3]Miao X, Wu Q: Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 2006, 97:841-846.
  • [4]Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y: Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 2011, 45:11-36.
  • [5]Xu H, Miao X, Wu Q: High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 2006, 126:499-507.
  • [6]Xiong W, Li X, Xiang J, Wu Q: High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 2008, 78:29-36.
  • [7]Xiong W, Gao C, Yan D, Wu C, Wu Q: Double CO (2) fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 2010, 101:2287-2293.
  • [8]Lu Y, Ding Y, Wu Q: Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J Appl Phycol 2011, 23:115-121.
  • [9]Gao C, Zhai Y, Ding Y, Wu Q: Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 2010, 87:756-761.
  • [10]Yan D, Lu Y, Chen Y-F, Wu Q: Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 2011, 102:6487-6493.
  • [11]Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q: Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 2009, 84:777-781.
  • [12]Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, Zhang Z, Zhang Y, Wang W, Li J, Wei F, Li H, Jian M, Li J, Zhang Z, Nielsen R, Li D, Gu W, Yang Z, Xuan Z, Ryder OA, Leung FC, Zhou Y, Cao J, Sun X, Fu Y, et al.: The sequence and de novo assembly of the giant panda genome. Nature 2010, 463:311-317.
  • [13]Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 2007, 23:1061-1067.
  • [14]Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL: The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 2010, 22:2943-2955.
  • [15]Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilinan J, Pröschold T, Salamov A, Schmutz J, Weeks D, Yamada T, Lomsadze A, Borodovsky M, Claverie JM, Grigoriev IV, Van Etten JL, et al.: The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 2012, 13:R39.
  • [16]Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM: The mode and tempo of genome size evolution in eukaryotes. Genome Res 2007, 17:594-601.
  • [17]Le Bihan T, Martin SF, Chirnside ES, van Ooijen G, Barrios-Llerena ME, O’Neill JS, Shliaha PV, Kerr LE, Millar AJ: Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri. J Proteomics 2011, 74:2060-2070.
  • [18]Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, et al.: The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 2007, 104:7705-7710.
  • [19]Tirichine L, Bowler C: Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J 2011, 66:45-57.
  • [20]Kumar A, Bennetzen JL: Plant retrotransposons. Annu Rev Genet 1999, 33:479-532.
  • [21]Zheng ZL: Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav 2009, 4:584-591.
  • [22]Yan D, Dai J, Wu Q: Characterization of an ammonium transporter in the oleaginous alga Chlorella protothecoides. Appl Microbiol Biotechnol 2013, 97:919-928.
  • [23]Morris SM Jr: Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 2002, 22:87-105.
  • [24]Allen AE, Dupont CL, Obornik M, Horak A, Nunes-Nesi A, McCrow JP, Zheng H, Johnson DA, Hu H, Fernie AR, Bowler C: Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 2011, 473:203-207.
  • [25]Commichau FM, Forchhammer K, Stulke J: Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 2006, 9:167-172.
  • [26]Williams LE, Lemoine R, Sauer N: Sugar transporters in higher plants–a diversity of roles and complex regulation. Trends Plant Sci 2000, 5:283-290.
  • [27]McCurdy DW, Dibley S, Cahyanegara R, Martin A, Patrick JW: Functional characterization and RNAi-mediated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit. Mol Plant 2010, 3:1049-1063.
  • [28]Ozcan S, Johnston M: Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 1999, 63:554-569.
  • [29]Sauer N, Tanner W: The hexose carrier from Chlorella. cDNA cloning of a eucaryotic H + -cotransporter. FEBS Lett 1989, 259:43-46.
  • [30]Stadler R, Wolf K, Hilgarth C, Tanner W, Sauer N: Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H + symporter and cloning of a Co-induced galactose-H + symporter. Plant Physiol 1995, 107:33-41.
  • [31]Will A, Caspari T, Tanner W: Km mutants of the Chlorella monosaccharide/H + cotransporter randomly generated by PCR. Proc Natl Acad Sci USA 1994, 91:10163-10167.
  • [32]Kato Y, Ueno S, Imamura N: Studies on the nitrogen utilization of endosymbiotic algae isolated from Japanese Paramecium bursaria. Plant Sci 2006, 170:481-486.
  • [33]Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O: Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H (2) production. J Biotechnol 2007, 131:27-33.
  • [34]Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J: Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 1997, 113:75-81.
  • [35]Chen M, Thelen JJ: The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 2010, 22:77-90.
  • [36]Olah J, Orosz F, Keseru GM, Kovari Z, Kovacs J, Hollan S, Ovadi J: Triosephosphate isomerase deficiency: a neurodegenerative misfolding disease. Biochem Soc Trans 2002, 30:30-38.
  • [37]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20:265-272.
  • [38]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437:376-380.
  • [39]Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the elusive mis-assembly. Genome Biol 2008, 9:R55.
  • [40]Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B: AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 2006, 34:W435-W439.
  • [41]Korf I: Gene finding in novel genomes. BMC Bioinformatics 2004, 5:59.
  • [42]Majoros WH, Pertea M, Salzberg SL: TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 2004, 20:2878-2879.
  • [43]Elsik CG, Mackey AJ, Reese JT, Milshina NV, Roos DS, Weinstock GM: Creating a honey bee consensus gene set. Genome Biol 2007, 8:R13.
  • [44]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25:1105-1111.
  • [45]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-515.
  • [46]Bairoch A, Boeckmann B, Ferro S, Gasteiger E: Swiss-Prot: juggling between evolution and stability. Brief Bioinform 2004, 5:39-55.
  • [47]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
  • [48]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40:D306-D312.
  • [49]Xu Z, Wang H: LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 2007, 35:W265-W268.
  • [50]Edgar RC, Myers EW: PILER: identification and classification of genomic repeats. Bioinformatics 2005, 21(Suppl 1):i152-i158.
  • [51]Price AL, Jones NC, Pevzner PA: De novo identification of repeat families in large genomes. Bioinformatics 2005, 21(Suppl 1):i351-i358.
  • [52]Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27:573-580.
  • [53]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110:462-467.
  • [54]Li H, Coghlan A, Ruan J, Coin LJ, Hériché JK, Osmotherly L, Li R, Liu T, Zhang Z, Bolund L, Wong GK, Zheng W, Dehal P, Wang J, Durbin R: TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res 2006, 34:D572-D580.
  • [55]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [56]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [57]Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D: Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A 2003, 100:11484-11489.
  • [58]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5:621-628.
  • [59]Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res 1997, 7:986-995.
  • [60]Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: a Prctical and Powerful Approach to Multiple Testing. J R Stat Soc 1995, 57:12.
  • [61]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
  • [62]Zhang N, Zhang Z, Feng S, Wang Q, Malamud D, Deng H: Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals. Anal Chim Acta 2013, 774:61-66.
  • [63]Callister SJ, Barry RC, Adkins JN, Johnson ET, Qian WJ, Webb-Robertson BJ, Smith RD, Lipton MS: Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J Proteome Res 2006, 5:277-286.
  文献评价指标  
  下载次数:16次 浏览次数:26次