期刊论文详细信息
BMC Systems Biology
Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates
Elena R Alvarez-Buylla2  Carlos Villarreal1  Jose Davila-Velderrain2 
[1] Instituto de Física, Universidad Nacional Autónoma de México, Cd. Universitaria, México 04510, D.F., México;Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Cd. Universitaria, México 04510, D.F., México
关键词: Attractor transitions;    Flower development;    Differentiation;    Attractor landscape;    Epigenetic landscape;    Gene regulatory network;   
Others  :  1210174
DOI  :  10.1186/s12918-015-0166-y
 received in 2014-12-19, accepted in 2015-04-22,  发布年份 2015
PDF
【 摘 要 】

Background

Gene regulatory network (GRN) dynamical models are standard systems biology tools for the mechanistic understanding of developmental processes and are enabling the formalization of the epigenetic landscape (EL) model.

Methods

In this work we propose a modeling framework which integrates standard mathematical analyses to extend the simple GRN Boolean model in order to address questions regarding the impact of gene specific perturbations in cell-fate decisions during development.

Results

We systematically tested the propensity of individual genes to produce qualitative changes to the EL induced by modification of gene characteristic decay rates reflecting the temporal dynamics of differentiation stimuli. By applying this approach to the flower specification GRN (FOS-GRN) we uncovered differences in the functional (dynamical) role of their genes. The observed dynamical behavior correlates with biological observables. We found a relationship between the propensity of undergoing attractor transitions between attraction basins in the EL and the direction of differentiation during early flower development - being less likely to induce up-stream attractor transitions as the course of development progresses. Our model also uncovered a potential mechanism at play during the transition from EL basins defining inflorescence meristem to those associated to flower organs meristem. Additionally, our analysis provided a mechanistic interpretation of the homeotic property of the ABC genes, being more likely to produce both an induced inter-attractor transition and to specify a novel attractor. Finally, we found that there is a close relationship between a gene’s topological features and its propensity to produce attractor transitions.

Conclusions

The study of how the state-space associated with a dynamical model of a GRN can be restructured by modulation of genes’ characteristic expression times is an important aid for understanding underlying mechanisms occurring during development. Our contribution offers a simple framework to approach such problem, as exemplified here by the case of flower development. Different GRN models and the effect of diverse inductive signals can be explored within the same framework. We speculate that the dynamical role of specific genes within a GRN, as uncovered here, might give information about which genes are more likely to link a module to other regulatory circuits and signaling transduction pathways.

【 授权许可】

   
2015 Davila-Velderrain et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150603020911586.pdf 1013KB PDF download
Figure 5. 25KB Image download
Figure 4. 71KB Image download
Figure 3. 20KB Image download
Figure 2. 41KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Alvarez-Buylla aER, Benítez M, Dávila EB, Chaos A, Espinosa-Soto C, Padilla-Longoria P: Gene regulatory network models for plant development. Curr Opin Plant Biol. 2007, 10(1):83-91.
  • [2]Alvarez-Buylla ER, Azpeitia E, Barrio R, Benítez M, Padilla-Longoria P: From abc genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches. Seminars Cell Dev Biol. 2010, 21(1):108-17.
  • [3]Furusawa C, Kaneko K: A dynamical-systems view of stem cell biology. Science 2012, 338(6104):215-7.
  • [4]Huang S, Kauffman S: Complex gene regulatory networks-from structure to biological observables: cell fate determination. In Encyclopedia of Complexity and Systems Science. Edited by RA M. Springer, New York; 2009.
  • [5]Huang S, Guo Y-P, May G, Enver T: Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol. 2007, 305(2):695-713.
  • [6]Huang S. Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules. PLoS Biol. 2010; 8(5):1000380.
  • [7]Andrecut M, Halley JD, Winkler DA, Huang S. A general model for binary cell fate decision gene circuits with degeneracy: indeterminacy and switch behavior in the absence of cooperativity. PloS One. 2011; 6(5):19358.
  • [8]Zhou JX, Brusch L, Huang S. Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model. PloS One. 2011; 6(3):14752.
  • [9]Li C, Wang J. Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths. PLoS Comput Biol. 2013; 9(8):1003165.
  • [10]Jaeger J, Sharpe J: On the concept of mechanism in development. In Towards a Theory of Development. Oxford University Press, Oxford; 2014.
  • [11]Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER: A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell Online 2004, 16(11):2923-39.
  • [12]Von Dassow G, Meir E, Munro EM, Odell GM: The segment polarity network is a robust developmental module. Nature 2000, 406(6792):188-92.
  • [13]Kaneko K: Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness. Bioessays 2011, 33(6):403-13.
  • [14]Kauffman SA: Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol. 1969, 22(3):437-67.
  • [15]Kauffman SA: The Origins of Order: Self-organization and Selection in Evolution. Oxford university press, New York; 1993.
  • [16]Huang S, Eichler G, Bar-Yam Y, Ingber DE. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett. 2005; 94(12):128701.
  • [17]Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S: Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 2008, 453(7194):544-7.
  • [18]Albert R, Othmer HG: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J Theor Biol. 2003, 223(1):1-18.
  • [19]Mendoza L, Alvarez-Buylla ER: Dynamics of the genetic regulatory network for arabidopsis thaliana flower morphogenesis. J Theor Biol. 1998, 193(2):307-19.
  • [20]Albert I, Thakar J, Li S, Zhang R, Albert R: Boolean network simulations for life scientists. Source Code Biol Med. 2008, 3(1):1-8. BioMed Central Full Text
  • [21]Azpeitia E, Davila-Velderrain J, Villarreal C, Alvarez-Buylla ER: Gene regulatory network models for floral organ determination. In Flower Development. Springer, New York; 2014.
  • [22]Waddington CH: The Strategy of Genes. George Allen & Unwin, Ltd., London; 1957.
  • [23]Siegal ML, Bergman A: Waddington’s canalization revisited: developmental stability and evolution. Proc Nat Acad Sci. 2002, 99(16):10528-32.
  • [24]Álvarez-Buylla ER, Chaos Á, Aldana M, Benítez M, Cortes-Poza Y, Espinosa-Soto C, et al. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. Plos One. 2008; 3(11):3626.
  • [25]Wang J, Zhang K, Xu L, Wang E: Quantifying the waddington landscape and biological paths for development and differentiation. Proc Nat Acad Sci. 2011, 108(20):8257-62.
  • [26]Enver T, Pera M, Peterson C, Andrews PW: Stem cell states, fates, and the rules of attraction. Cell Stem Cell 2009, 4(5):387-97.
  • [27]Fagan MB: Waddington redux: models and explanation in stem cell and systems biology. Biol Philosophy 2012, 27(2):179-213.
  • [28]Ladewig J, Koch P, Brüstle O: Leveling waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat Rev Mol Cell Biol. 2013, 14(4):225-36.
  • [29]Huang S: The molecular and mathematical basis of waddington’s epigenetic landscape: A framework for post-darwinian biology? Bioessays. 2012, 34(2):149-57.
  • [30]Davila-Velderrain J, Martinez-Garcia J, Alvarez-Buylla ER. Modeling the epigenetic attractors landscape: towards a post-genomic mechanistic understanding of development. Front Genet. 2015; 6:160.
  • [31]Zhou JX, Qiu X, d’Herouel AF, Huang S: Discrete gene network models for understanding multicellularity and cell reprogramming: From network structure to attractor landscapes landscape. In Computational Systems Biology. Elsevier, CA; 2014.
  • [32]Davila-Velderrain J, Alvarez-Buylla ER. Bridging genotype and phenotype. In: Frontiers in Ecology, Evolution and Complexity. CopIt ArXives: 2014. p. 144–154.
  • [33]Villarreal C, Padilla-Longoria P, Alvarez-Buylla ER. General theory of genotype to phenotype mapping: derivation of epigenetic landscapes from n-node complex gene regulatory networks. Phys Rev Lett. 2012; 109(11):118102.
  • [34]Zhou JX, Aliyu M, Aurell E, Huang S: Quasi-potential landscape in complex multi-stable systems. J R Soc Interface 2012, 9(77):3539-53.
  • [35]Choi M, Shi J, Jung SH, Chen X, Cho K-H. Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to dna damage. Sci Signaling. 2012; 5(251):83.
  • [36]Wang P, Song C, Zhang H, Wu Z, Tian X-J, Xing J. Epigenetic state network approach for describing cell phenotypic transitions. Interface Focus. 2014; 4(3):20130068.
  • [37]Lu M, Onuchic J, Ben-Jacob E. Construction of an effective landscape for multistate genetic switches. Phys Rev Lett. 2014; 113(7):078102.
  • [38]Fujimoto K, Ishihara S, Kaneko K. Network evolution of body plans. PLoS One. 2008; 3(7):2772.
  • [39]Suzuki N, Furusawa C, Kaneko K. Oscillatory protein expression dynamics endows stem cells with robust differentiation potential. PLoS One. 2011; 6(11):27232.
  • [40]Cotterell J, Sharpe J. Mechanistic explanations for restricted evolutionary paths that emerge from gene regulatory networks. PloS one. 2013; 8(4):61178.
  • [41]Sanchez-Corrales Y-E, Alvarez-Buylla ER, Mendoza L: The arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process. J Theor Biol. 2010, 264(3):971-83.
  • [42]Coen ES, Meyerowitz EM: The war of the whorls: genetic interactions controlling flower development. Nature 1991, 353(6339):31-7.
  • [43]Sole R: Phase Transitions. Princeton U. Press, New Jersey; 2011.
  • [44]Seydel R: Practical Bifurcation and Stability Analysis. Springer, New York; 2010.
  • [45]Müssel C, Hopfensitz M, Kestler HA: Boolnet–an r package for generation, reconstruction and analysis of boolean networks. Bioinformatics 2010, 26(10):1378-80.
  • [46]Glass L: Classification of biological networks by their qualitative dynamics. J Theor Biol. 1975, 54(1):85-107.
  • [47]Mendoza L, Xenarios I. A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor Biol Med Modell. 2006; 3(1):13.
  • [48]Mangan S, Alon U: Structure and function of the feed-forward loop network motif. Proc Nat Acad Sci. 2003, 100(21):11980-5.
  • [49]Lu M, Jolly MK, Gomoto R, Huang B, Onuchic J, Ben-Jacob E: Tristability in cancer-associated microrna-tf chimera toggle switch. J Phys Chem B 2013, 117(42):13164-74.
  • [50]Soetaert K, Petzoldt T, Setzer RW: Solving differential equations in r: Package desolve. J Stat Software 2010, 33(9):1-25.
  • [51]Soetaert K, Cash J, Mazzia F: Solving Differential Equations in R. Springer, New York; 2012.
  • [52]Shmulevich I, Kauffman SA, Aldana M: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc Nat Acad Sci USA. 2005, 102(38):13439-44.
  • [53]James G, Witten D, Hastie T, Tibshirani R: An Introduction to Statistical Learning. Springer, New York; 2013.
  • [54]Csardi G, Nepusz T: The igraph software package for complex network research. InterJournal Complex Syst. 2006, 1695(5):1-9.
  • [55]Barrio R. Á, Hernandez-Machado A, Varea C, Romero-Arias JR, Alvarez-Buylla E. Flower development as an interplay between dynamical physical fields and genetic networks. PloS one. 2010; 5(10):13523.
  • [56]Everitt B, Hothorn T: An Introduction to Applied Multivariate Analysis with R. Springer, New York; 2011.
  • [57]Yu H, Huang J, Zhang W, Han J-DJ: Network analysis to interpret complex phenotypes. In Applied Statistics for Network Biology: Methods in Systems Biology. Wiley Online Library, Germany; 2011.
  • [58]Alvarez-Ponce D, Aguadé M, Rozas J: Network-level molecular evolutionary analysis of the insulin/tor signal transduction pathway across 12 drosophila genomes. Genome Res. 2009, 19(2):234-42.
  • [59]Davila-Velderrain J, Servin-Marquez A, Alvarez-Buylla ER: Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes. Mol Biol Evol. 2014, 31(3):560-73.
  • [60]Pujadas E, Feinberg AP: Regulated noise in the epigenetic landscape of development and disease. Cell 2012, 148(6):1123-31.
  • [61]Ferrell Jr JE: Bistability, bifurcations, and waddington’s epigenetic landscape. Curr Biol. 2012, 22(11):458-66.
  • [62]Wang J, Xu L, Wang E, Huang S: The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys J. 2010, 99(1):29-39.
  • [63]Jaeger J, Crombach A: Life’s attractors. In Evolutionary Systems Biology. Springer, New York; 2012.
  • [64]Jaeger J, Irons D, Monk N: The inheritance of process: a dynamical systems approach. J Environ Zool Part B: Mol Dev Evol. 2012, 318(8):591-612.
  • [65]Verd B, Crombach A, Jaeger J. Classification of transient behaviours in a time-dependent toggle switch model. BMC Syst Biol. 2014; 8(1):43.
  • [66]Pérez-Ruiz RV, García-Ponce B, Marsch-Martínez N, Ugartechea-Chirino Y, Villajuana-Bonequi M, de Folter S, et al. XAANTAL2 (AGL14) is an important component of the complex gene regulatory network that underlies arabidopsis shoot apical meristem transitions. Mol Plant. 2015. doi:10.1016/j.molp.2015.01.017.
  • [67]Haken H: Synergetics. Springer, New York; 1977.
  • [68]Ge H, Qian H. Landscapes of non-gradient dynamics without detailed balance: Stable limit cycles and multiple attractors. Chaos: Interdisciplinary J Nonlinear Sci. 2012; 22(2):023140.
  • [69]Mitra MK, Taylor PR, Hutchison CJ, McLeish T, Chakrabarti B. Delayed self-regulation and time-dependent chemical drive leads to novel states in epigenetic landscapes. J R Soc Interface. 2014; 11(100):20140706.
  • [70]Lawton-Rauh AL, Alvarez-Buylla ER, Purugganan MD: Molecular evolution of flower development. Trends Ecol Evol. 2000, 15(4):144-9.
  • [71]Mandel MA, Yanofsky MF: A gene triggering flower formation in arabidopsis. Nature 1995, 377(6549):522-4.
  • [72]Benlloch R, Berbel A, Serrano-Mislata A, Madueño F: Floral initiation and inflorescence architecture: a comparative view. Ann Bot. 2007, 100(3):659-76.
  文献评价指标  
  下载次数:67次 浏览次数:25次