期刊论文详细信息
BMC Genomics
Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes
Emanuel M Souza2  Fábio O Pedrosa2  Leda S Chubatsu2  Vinicius A Weiss2  Helisson Faoro2  Lucélia Donatti1  Glaucio Valdameri2  Liziane CC Brusamarello-Santos2  Michelle Z Tadra-Sfeir2  Roseli Wassem4  Paloma Bonato2  Doumit Camilios-Neto3 
[1] Department of Cellular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil;Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR 81531-990, Brazil;Departament of Biochemistry and Biotechnology, Universidade Estadual de Londrina, Londrina, PR, Brazil;Department of Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
关键词: Cell cycle and nitrogen fixation;    PGPB;    Azospirilum brasilense;    Triticum aestivum;    Wheat;    Transcriptional analysis;    RNA-seq;   
Others  :  1217223
DOI  :  10.1186/1471-2164-15-378
 received in 2013-11-15, accepted in 2014-05-02,  发布年份 2014
PDF
【 摘 要 】

Background

The rapid growth of the world’s population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB.

Results

We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes.

Conclusions

PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability.

【 授权许可】

   
2014 Camilios-Neto et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705122557535.pdf 3183KB PDF download
Figure 6. 119KB Image download
Figure 5. 62KB Image download
Figure 4. 138KB Image download
Figure 3. 84KB Image download
Figure 2. 132KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Tester M, Langridge P: Breeding technologies to increase crop production in a changing world. Science 2010, 327(5967):818-822.
  • [2]Robertson GP, Vitousek PM: Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 2009, 34:97-125.
  • [3]Hirel B, Tétu T, Lea P, Dubois F: Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3(9):1452-1485.
  • [4]Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S: Agricultural sustainability and intensive production practices. Nature 2002, 418(6898):671-677.
  • [5]Hungria M, Campo RJ, Souza EM, Pedrosa FO: Inoculation with selected strains of azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 2010, 331(1–2):413-425.
  • [6]Fibach-Paldi S, Burdman S, Okon Y: Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of azospirillum brasilense. FEMS Microbiol Lett 2012, 326(2):99-108.
  • [7]Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C: A physical map of the 1-gigabase bread wheat chromosome 3B. Science 2008, 322(5898):101.
  • [8]Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V: The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 2011, 49:465-481.
  • [9]Westermann AJ, Gorski SA, Vogel J: Dual RNA-seq of pathogen and host. Nat Rev Microbiol 2012, 10(9):618-630.
  • [10]Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E: Simultaneous RNA-Seq analysis of a mixed transcriptome of rice and blast fungus interaction. Plos One 2012, 7(11):e49423.
  • [11]Steenhoudt O, Vanderleyden J: Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 2000, 24(4):487-506.
  • [12]Okon Y: Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 1985, 3(9):223-228.
  • [13]Pinheiro RD, Boddey LH, James EK, Sprent JI, Boddey RM: Adsorption and anchoring of azospirillum strains to roots of wheat seedlings. Plant Soil 2002, 246(2):151-166.
  • [14]Kadouri D, Jurkevitch E, Okon Y: Involvement of the reserve material poly-beta-hydroxybutyrate in azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 2003, 69(6):3244-3250.
  • [15]Zhang Z, Yu J, Li D, Liu F, Zhou X, Wang T, Ling Y, Su Z: PMRD: plant microRNA database. Nucleic Acids Res 2010, 38(Database issue):D806-D813.
  • [16]Wisniewski-Dye F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V, Calteau A, Rouy Z, Mangenot S, Prigent-Combaret C, Normand P, Boyer M, Siguier P, Dessaux Y, Elmerich C, Condemine G, Krishnen G, Kennedy I, Paterson AH, Gonzalez V, Mavingui P, Zhulin IB: Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 2011, 7(12):e1002430.
  • [17]Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu J-K, Sun Q: Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 2007, 8(6):R96.
  • [18]Sunkar R, Girke T, Jain PK, Zhu JK: Cloning and characterization of MicroRNAs from rice. Plant Cell 2005, 17(5):1397-1411.
  • [19]Gutierrez RA: Systems biology for enhanced plant nitrogen nutrition. Science 2012, 336(6089):1673-1675.
  • [20]Zhang HM, Forde BG: An arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 1998, 279(5349):407-409.
  • [21]Vanbastelaere E, Demot R, Michiels K, Vanderleyden J: Differential gene-expression in Azospirillum spp by plant-root exudates - analysis of protein profiles by 2-dimensional polyacrylamide-gel electrophoresis. FEMS Microbiol Lett 1993, 112(3):335-342.
  • [22]Van Bastelaere E, Lambrecht M, Vermeiren H, Van Dommelen A, Keijers V, Proost P, Vanderleyden J: Characterization of a sugar-binding protein from azospirillum brasilense mediating chemotaxis to and uptake of sugars. Mol Microbiol 1999, 32(4):703-714.
  • [23]Ampe F, Kiss E, Sabourdy F, Batut J: Transcriptome analysis of sinorhizobium meliloti during symbiosis. Genome Biol 2003, 4(2):R15.
  • [24]Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F: Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 1999, 181(21):6573-6584.
  • [25]Van Alst NE, Picardo KF, Iglewski BH, Haidaris CG: Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in pseudomonas aeruginosa. Infect Immun 2007, 75(8):3780-3790.
  • [26]Döbereiner J, Pedrosa FO: Nitrogen-fixing bacteria in nonleguminous crop plants. Berlin: Madison: WI:Science Tech. Publishers; 1987.
  • [27]James EK: Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 2000, 65(2–3):197-209.
  • [28]Arsene F, Katupitiya S, Kennedy IR, Elmerich C: Use of lacz fusions to study the expression of nif genes of azospirillum-brasilense in association with plants. Mol Plant Microbe In 1994, 7(6):748-757.
  • [29]Bari R, Jones JDG: Role of plant hormones in plant defence responses. Plant Mol Biol 2009, 69(4):473-488.
  • [30]Robert-Seilaniantz A, Grant M, Jones JD: Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 2011, 49:317-343.
  • [31]Elmore JM, Lin Z-JD, Coaker G: Plant NB-LRR signaling: upstreams and downstreams. Curr Opin Plant Biol 2011, 14(4):365-371.
  • [32]Lee J-H, Yun HS, Kwon C: Molecular communications between plant heat shock responses and disease resistance. Mol Cells 2012, 34(2):109-116.
  • [33]Broekaert WF, Delaure SL, De Bolle MFC, Cammuel BPA: The role of ethylene in host-pathoven interactions. Annu Rev Phytopathol 2006, 44:393-416.
  • [34]Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR: Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in arabidopsis. Plant Cell 2009, 21(11):3567-3584.
  • [35]Lea US, Slimestad R, Smedvig P, Lillo C: Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 2007, 225(5):1245-1253.
  • [36]Nogueira ED, Olivares FL, Japiassu JC, Vilar C, Vinagre F, Baldani JI, Hemerly AS: Characterization of glutamine synthetase genes in sugarcane genotypes with different rates of biological nitrogen fixation. Plant Sci 2005, 169(5):819-832.
  • [37]Yang Z, Bruno DP, Martens CA, Porcella SF, Moss B: Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc Natl Acad Sci U S A 2010, 107(25):11513-11518.
  • [38]Tierney L, Linde J, Mueller S, Brunke S, Molina JC, Hube B, Schoeck U, Guthke R, Kuchler K: An interspecies network inference model of candida albicans invading innate immune cells identifies novel host-pathogen interactions. Mycoses 2012, 55:57.
  • [39]Schreiber AW, Hayden MJ, Forrest KL, Kong SL, Langridge P, Baumann U: Transcriptome-scale homoeolog-specific transcript assemblies of bread wheat. BMC Genomics 2012, 13:492.
  • [40]Duan J, Xia C, Zhao G, Jia J, Kong X: Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data. BMC Genomics 2012, 13:392.
  • [41]Lai K, Duran C, Berkman PJ, Lorenc MT, Stiller J, Manoli S, Hayden MJ, Forrest KL, Fleury D, Baumann U, Zander M, Mason AS, Batley J, Edwards D: Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnol J 2012, 10(6):743-749.
  • [42]Cantu D, Pearce SP, Distelfeld A, Christiansen MW, Uauy C, Akhunov E, Fahima T, Dubcovsky J: Effect of the down-regulation of the high grain protein content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics 2011, 12:492.
  • [43]Pont C, Murat F, Confolent C, Balzergue S, Salse J: RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.). Genome Biol 2011, 12(12):R119.
  • [44]Gillies SA, Futardo A, Henry RJ: Gene expression in the developing aleurone and starchy endosperm of wheat. Plant Biotechnol J 2012, 10(6):668-679.
  • [45]Pellny TK, Lovegrove A, Freeman J, Tosi P, Love CG, Knox JP, Shewry PR, Mitchell RAC: Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiol 2012, 158(2):612-627.
  • [46]Trick M, Adamski NM, Mugford SG, Jiang C-C, Febrer M, Uauy C: Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 2012, 12:14.
  • [47]Li A, Zhang R, Pan L, Tang L, Zhao G, Zhu M, Chu J, Sun X, Wei B, Zhang X, Jia J, Mao L: Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance. Plos One 2011, 6(12):e28810.
  • [48]Segonzac C, Boyer J-C, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R: Nitrate efflux at the root plasma membrane: identification of an arabidopsis excretion transporter. Plant Cell 2007, 19(11):3760-3777.
  • [49]Wendehenne D, Lamotte O, Frachisse JM, Barbier-Brygoo H, Pugin A: Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. Plant Cell 2002, 14(8):1937-1951.
  • [50]Oldroyd GED, Harrison MJ, Paszkowski U: Reprogramming plant cells for endosymbiosis. Science 2009, 324(5928):753-754.
  • [51]Bednarek P, Kwon C, Schulze-Lefert P: Not a peripheral issue: secretion in plant-microbe interactions. Curr Opin Plant Biol 2010, 13(4):378-387.
  • [52]Zhang J, Subramanian S, Stacey G, Yu O: Flavones and flavonols play distinct critical roles during nodulation of medicago truncatula by sinorhizobium meliloti. Plant J 2009, 57(1):171-183.
  • [53]Robert-Seilaniantz A, Navarro L, Bari R, Jones JD: Pathological hormone imbalances. Curr Opin Plant Biol 2007, 10(4):372-379.
  • [54]Spoel SH, Dong X: Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 2008, 3(6):348-351.
  • [55]Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E: Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 2007, 53(11):1195-1202.
  • [56]Dimkpa C, Weinand T, Asch F: Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 2009, 32(12):1682-1694.
  • [57]Varin L, Deluca V, Ibrahim RK, Brisson N: Molecular characterization of 2 plant flavonol sulfotransferases. Proc Natl Acad Sci U S A 1992, 89(4):1286-1290.
  • [58]Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT: Seed inoculation with azospirillum mitigates NaCl effects on lettuce. Sci Hortic 2006, 109(1):8-14.
  • [59]Creus CM, Sueldo RJ, Barassi CA: Water relations and yield in azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 2004, 82(2):273-281.
  • [60]Pereyra MA, Zalazar CA, Barassi CA: Root phospholipids in azospirillum-inoculated wheat seedlings exposed to water stress. Plant Physiol Biochem 2006, 44(11–12):873-879.
  • [61]Pereyra MA, Garcia P, Colabelli MN, Barassi CA, Creus CM: A better water status in wheat seedlings induced by azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 2012, 53:94-97.
  • [62]Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O: Cadaverine production by azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 2009, 45(1):12-19.
  • [63]Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y: Effects of inoculation with azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 2001, 21(6–7):553-560.
  • [64]Hamdia ABE, Shaddad MAK, Doaa MM: Mechanisms of salt tolerance and interactive effects of azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 2004, 44(2):165-174.
  • [65]Hoagland D, Arnon D: The water-culture method for growing plants without soil. Circular California Agriculture Experimental Station 1950, 347:1-32.
  • [66]Machado HB, Funayama S, Rigo LU, Pedrosa FQ: Excretion of ammonium by azospirillum-brasilense mutants resistant to ethylenediamine. Can J Microbiol 1991, 37(7):549-553.
  • [67]Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E: Rapid flow cytometric analysis of the cell-cycle in intact plant-tissues. Science 1983, 220(4601):1049-1051.
  • [68]Karnovsk M: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 1965, 27(2):A137.
  • [69]Luft JH: Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 1961, 9(2):409.
  • [70]Watson ML: Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 1958, 4(4):475.
  • [71]Reynolds ES: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 1963, 17(1):208.
  • [72]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106.
  • [73]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [74]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  • [75]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):RESEARCH0034.
  文献评价指标  
  下载次数:68次 浏览次数:30次