期刊论文详细信息
BMC Microbiology
Biochemical and molecular characterization of Treponema phagedenis-like spirochetes isolated from a bovine digital dermatitis lesion
Thad B Stanton1  David P Alt3  Darrell O Bayles3  Richard L Zuerner2  Margaret K Elliott3  Jennifer H Wilson-Welder2 
[1] Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Ames, Iowa 50010, USA;Mailing address: USDA, ARS, National Animal Disease Center, 1920 N. Dayton Ave, P.O. Box 70, Ames, IA 50010, USA;Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, Iowa 50010, USA
关键词: Genomic comparison;    Bacterial growth;    Spirochete;    Treponema;    Bovine digital dermatitis;   
Others  :  1142496
DOI  :  10.1186/1471-2180-13-280
 received in 2013-09-10, accepted in 2013-11-29,  发布年份 2013
PDF
【 摘 要 】

Background

Bovine papillomatous digital dermatitis (DD) is the leading cause of lameness in dairy cattle and represents a serious welfare and economic burden. Found primarily in high production dairy cattle worldwide, DD is characterized by the development of an often painful red, raw ulcerative or papillomatous lesion frequently located near the interdigital cleft and above the bulbs of the heel. While the exact etiology is unknown, several spirochete species have been isolated from lesion material. Four isolates of Treponema phagedenis-like spirochetes were isolated from dairy cows in Iowa. Given the distinct differences in host, environmental niche, and disease association, a closer analysis of phenotypic characteristics, growth characteristics, and genomic sequences of T. phagedenis, a human genitalia commensal, and the Iowa DD isolates was undertaken.

Results

Phenotypically, these isolates range from 8.0 to 9.7 μm in length with 6–8 flagella on each end. These isolates, like T. phagedenis, are strictly anaerobic, require serum and volatile fatty acids for growth, and are capable of fermenting fructose, mannitol, pectin, mannose, ribose, maltose, and glucose. Major glucose fermentation products produced are formate, acetate, and butyrate. Further study was conducted with a single isolate, 4A, showing an optimal growth pH of 7.0 (range of 6–8.5) and an optimal growth temperature of 40°C (range of 29°C-43°C). Comparison of partial genomic contigs of isolate 4A and contigs of T. phagedenis F0421 revealed > 95% amino acid sequence identity with amino acid sequence of 4A. In silico DNA-DNA whole genome hybridization and BLAT analysis indicated a DDH estimate of >80% between isolate 4A and T. phagedenis F0421, and estimates of 52.5% or less when compared to the fully sequenced genomes of other treponeme species.

Conclusion

Using both physiological, biochemical and genomic analysis, there is a lack of evidence for difference between T. phagedenis and isolate 4A. The description of Treponema phagedenis should be expanded from human genital skin commensal to include being an inhabitant within DD lesions in cattle.

【 授权许可】

   
2013 Wilson-Welder et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328072509112.pdf 2385KB PDF download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Brown CC, Kilgo PD, Jacobsen KL: Prevalence of papillomatous digital dermatitis among culled adult cattle in the southeastern United States. Am J Vet Res 2000, 61(8):928-930.
  • [2]Cha E, Hertl JA, Bar D, Grohn YT: The cost of different types of lameness in dairy cows calculated by dynamic programming. Prev Vet Med 2010, 97(1):1-8.
  • [3]Shearer JK, Van Amstel S: Lamness in Dairy Cattle. In Kentucky Dairy Conference. Lexington, KY; 2000:1-12. http://www.healthyhooves.com/pdffiles/dr%20shearer.pdf webcite accessed 12-3-13
  • [4]Fidler AP, Alley ML, Smith GW: Evaluation of a Serpens species bacterin for treatment of digital dermatitis in dairy cattle. Res Vet Sci 2012, 93(3):1258-1260.
  • [5]Ertze RA, Read DH, Hird DW, Berry SL: Field evaluation of prophylactic and therapeutic effects of a vaccine against (Papillomatous) digital dermatitis in dairy cattle on two California dairies. Bovine Practitioner 2006, 40:76-82.
  • [6]Berry SL, Read DH, Famula TR, Mongini A, Dopfer D: Long-term observations on the dynamics of bovine digital dermatitis lesions on a California dairy after topical treatment with lincomycin HCl. Vet J 2012, 193(6):654-658.
  • [7]Rollin BE: An ethicist’s commentary on trimming of lame dairy cattle. The Canadian veterinary journal La revue veterinaire canadienne 2005, 46(6):483.
  • [8]Moter A, Leist G, Rudolph R, Schrank K, Choi BK, Wagner M, Gobel UB: Fluorescence in situ hybridization shows spatial distribution of as yet uncultured treponemes in biopsies from digital dermatitis lesions. Microbiology 1998, 144(9):2459-2467.
  • [9]Cruz CE, Pescador CA, Nakajima Y, Driemeier D: Immunopathological investigations on bovine digital epidermitis. Vet Rec 2005, 157(26):834-840.
  • [10]Stamm LV, Bergen HL, Walker RL: Molecular typing of papillomatous digital dermatitis-associated Treponema isolates based on analysis of 16S-23S ribosomal DNA intergenic spacer regions. J Clin Microbiol 2002, 40(9):3463-3469.
  • [11]Walker RL, Read DH, Loretz KJ, Nordhausen RW: Spirochetes isolated from dairy cattle with papillomatous digital dermatitis and interdigital dermatitis. Vet Microbiol 1995, 47(3–4):343-355.
  • [12]Demirkan I, Williams HF, Dhawi A, Carter SD, Winstanley C, Bruce KD, Hart CA: Characterization of a spirochaete isolated from a case of bovine digital dermatitis. J Appl Microbiol 2006, 101(4):948-955.
  • [13]Elliott MK, Alt DP: Bovine immune response to papillomatous digital dermatitis (PDD)-associated spirochetes is skewed in isolate reactivity and subclass elicitation. Vet Immunol Immunopathol 2009, 130(3–4):256-261.
  • [14]Trott DJ, Moeller MR, Zuerner RL, Goff JP, Waters WR, Alt DP, Walker RL, Wannemuehler MJ: Characterization of Treponema phagedenis-like spirochetes isolated from papillomatous digital dermatitis lesions in dairy cattle. J Clin Microbiol 2003, 41(6):2522-2529.
  • [15]Walker RL, Read DH, Loretz KJ, Hird DW, Berry SL: Humoral response of dairy cattle to spirochetes isolated from papillomatous digital dermatitis lesions. Am J Vet Res 1997, 58(7):744-748.
  • [16]Evans NJ, Brown JM, Demirkan I, Murray RD, Vink WD, Blowey RW, Hart CA, Carter SD: Three unique groups of spirochetes isolated from digital dermatitis lesions in UK cattle. Vet Microbiol 2008, 130(1–2):141-150.
  • [17]Pringle M, Bergsten C, Fernstrom LL, Hook H, Johansson KE: Isolation and characterization of Treponema phagedenis-like spirochetes from digital dermatitis lesions in Swedish dairy cattle. Acta Vet Scand 2008, 50:40. BioMed Central Full Text
  • [18]Paster BJ: PhylumXV. Spirochaetes. In Bergey’s Manual of Systematic Bacteriology. Volume 4. 2nd edition. Edited by Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB. New York, New York: Springer; 2011.
  • [19]Wyss C, Moter A, Choi BK, Dewhirst FE, Xue Y, Schupbach P, Gobel UB, Paster BJ, Guggenheim B: Treponema putidum sp. nov., a medium-sized proteolytic spirochaete isolated from lesions of human periodontitis and acute necrotizing ulcerative gingivitis. Int J Syst Evol Microbiol 2004, 54(Pt 4):1117-1122.
  • [20]Evans NJ, Brown JM, Murray RD, Getty B, Birtles RJ, Hart CA, Carter SD: Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl Environ Microbiol 2011, 77(1):138-147.
  • [21]The Prokaryotes A handbook on the biology of bacteria: vol. 7: Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria. 3rd edition. New York, New York: Springer; 2006.
  • [22]Norris SJ, Paster BJ, Moter A, Gobel UB: The Genus Treponema. In Prokaryotes. Volume 7. 3rd edition. Edited by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. New York, New York: Springer; 2006::211-234.
  • [23]Choi BK, Nattermann H, Grund S, Haider W, Gobel UB: Spirochetes from digital dermatitis lesions in cattle are closely related to treponemes associated with human periodontitis. Int J Syst Bacteriol 1997, 47(1):175-181.
  • [24]Edwards AM, Dymock D, Woodward MJ, Jenkinson HF: Genetic relatedness and phenotypic characteristics of Treponema associated with human periodontal tissues and ruminant foot disease. Microbiology 2003, 149(5):1083-1093.
  • [25]Evans NJ, Brown JM, Demirkan I, Murray RD, Birtles RJ, Hart CA, Carter SD: Treponema pedis sp. nov., a spirochaete isolated from bovine digital dermatitis lesions. Int J Syst Evol Microbiol 2009, 59(5):987-991.
  • [26]Klitgaard K, Boye M, Capion N, Jensen TK: Evidence of multiple Treponema phylotypes involved in bovine digital dermatitis as shown by 16S rRNA gene analysis and fluorescence in situ hybridization. J Clin Microbiol 2008, 46(9):3012-3020.
  • [27]Schrank K, Choi BK, Grund S, Moter A, Heuner K, Nattermann H, Gobel UB: Treponema brennaborense sp. nov., a novel spirochaete isolated from a dairy cow suffering from digital dermatitis. Int J Syst Bacteriol 1999, 49(1):43-50.
  • [28]Jaspers E, Overmann J: Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 2004, 70(8):4831-4839.
  • [29]Dopfer D, Anklam K, Mikheil D, Ladell P: Growth curves and morphology of three Treponema subtypes isolated from digital dermatitis in cattle. Vet J 2012, 193(3):685-689.
  • [30]Stokes JE, Leach KA, Main DC, Whay HR: An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. Vet J 2012, 193(3):674-678.
  • [31]Kuramitsu HK, He X, Lux R, Anderson MH, Shi W: Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 2007, 71(4):653-670.
  • [32]Elliott MK, Alt DP, Zuerner RL: Lesion formation and antibody response induced by papillomatous digital dermatitis-associated spirochetes in a murine abscess model. Infect Immun 2007, 75(9):4400-4408.
  • [33]Salanitro JP, Muirhead PA: Quantitative method for the gas chromatographic analysis of short-chain monocarboxylic and dicarboxylic acids in fermentation media. Appl Microbiol 1975, 29(3):374-381.
  • [34]Stanton TB, Lebo DF: Treponema hyodysenteriae growth under various culture conditions. Vet Microbiol 1988, 18(2):177-190.
  • [35]Trott DJ, Stanton TB, Jensen NS, Hampson DJ: Phenotypic characteristics of Serpulina pilosicoli the agent of intestinal spirochaetosis. FEMS Microbiol Lett 1996, 142(2–3):209-214.
  • [36]Clarke PH: Hydrogen sulphide production by bacteria. J Gen Microbiol 1953, 8(3):397-407.
  • [37]Chevreux B, Wetter T, Suhai S: Genome Sequence Assembly Using Trace Signals and Additional Sequence Information. Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB) 99 1999, 45-56.
  • [38]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al.: The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75. BioMed Central Full Text
  • [39]Auch AF, von Jan M, Klenk HP, Goker M: Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Standards in Genomic Sci 2010, 2(1):117-134.
  • [40]Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002, 12(4):656-664.
  • [41]Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM: DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007, 57(1):81-91.
  文献评价指标  
  下载次数:94次 浏览次数:136次