期刊论文详细信息
BMC Microbiology
Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor
Milton H Saier1  Vamsee S Reddy1  Philipp CG Paparoditis1  Ake Vastermark1  Daniel C Yee1  Gina H Nalbandian1  Ilya Getsin1 
[1] Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
关键词: Genome analyses;    Myxococcus;    Streptomyces;    Transport proteins;   
Others  :  1142497
DOI  :  10.1186/1471-2180-13-279
 received in 2013-07-19, accepted in 2013-11-20,  发布年份 2013
PDF
【 摘 要 】

Background

Two of the largest fully sequenced prokaryotic genomes are those of the actinobacterium, Streptomyces coelicolor (Sco), and the δ-proteobacterium, Myxococcus xanthus (Mxa), both differentiating, sporulating, antibiotic producing, soil microbes. Although the genomes of Sco and Mxa are the same size (~9 Mbp), Sco has 10% more genes that are on average 10% smaller than those in Mxa.

Results

Surprisingly, Sco has 93% more identifiable transport proteins than Mxa. This is because Sco has amplified several specific types of its transport protein genes, while Mxa has done so to a much lesser extent. Amplification is substrate- and family-specific. For example, Sco but not Mxa has amplified its voltage-gated ion channels but not its aquaporins and mechano-sensitive channels. Sco but not Mxa has also amplified drug efflux pumps of the DHA2 Family of the Major Facilitator Superfamily (MFS) (49 versus 6), amino acid transporters of the APC Family (17 versus 2), ABC-type sugar transport proteins (85 versus 6), and organic anion transporters of several families. Sco has not amplified most other types of transporters. Mxa has selectively amplified one family of macrolid exporters relative to Sco (16 versus 1), consistent with the observation that Mxa makes more macrolids than does Sco.

Conclusions

Except for electron transport carriers, there is a poor correlation between the types of transporters found in these two organisms, suggesting that their solutions to differentiative and metabolic needs evolved independently. A number of unexpected and surprising observations are presented, and predictions are made regarding the physiological functions of recognizable transporters as well as the existence of yet to be discovered transport systems in these two important model organisms and their relatives. The results provide insight into the evolutionary processes by which two dissimilar prokaryotes evolved complexity, particularly through selective chromosomal gene amplification.

【 授权许可】

   
2013 Getsin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328072531480.pdf 868KB PDF download
Figure 6. 37KB Image download
Figure 5. 30KB Image download
Figure 4. 34KB Image download
Figure 3. 35KB Image download
Figure 2. 41KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]de Hoon MJ, Eichenberger P, Vitkup D: Hierarchical evolution of the bacterial sporulation network. Curr Biol 2010, 20(17):R735-745.
  • [2]Flardh K, Buttner MJ: Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 2009, 7(1):36-49.
  • [3]Gogolewski RP, Mackintosh JA, Wilson SC, Chin JC: Immunodominant antigens of zoospores from ovine isolates of Dermatophilus congolensis. Vet Microbiol 1992, 32(3–4):305-318.
  • [4]Setubal JC, dos Santos P, Goldman BS, Ertesvag H, Espin G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, et al.: Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 2009, 191(14):4534-4545.
  • [5]Kaiser D, Robinson M, Kroos L: Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2010, 2(8):a000380.
  • [6]Sarma TA, Ahuja G, Khattar JI: Nutrient stress causes akinete differentiation in cyanobacterium Anabaena torulosa with concomitant increase in nitrogen reserve substances. Folia Microbiol (Praha) 2004, 49(5):557-561.
  • [7]Higgins D, Dworkin J: Recent progress in bacillus subtilis sporulation. FEMS Microbiol Rev 2012, 36(1):131-148.
  • [8]Perez J, Munoz-Dorado J, Brana AF, Shimkets LJ, Sevillano L, Santamaria RI: Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor. Microb Biotechnol 2011, 4(2):175-183.
  • [9]Diez J, Martinez JP, Mestres J, Sasse F, Frank R, Meyerhans A: Myxobacteria: natural pharmaceutical factories. Microb Cell Fact 2012, 11:52. BioMed Central Full Text
  • [10]de Lima Procopio RE, da Silva IR, Martins MK, de Azevedo JL, de Araujo JM: Antibiotics produced by Streptomyces. Braz J Infect Dis 2012, 16(5):466-71.
  • [11]Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, et al.: Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002, 417(6885):141-147.
  • [12]Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, et al.: Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA 2006, 103(41):15200-15205.
  • [13]Saier MH Jr: A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 2000, 64(2):354-411.
  • [14]Martin JF, Sola-Landa A, Santos-Beneit F, Fernandez-Martinez LT, Prieto C, Rodriguez-Garcia A: Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol 2011, 4(2):165-174.
  • [15]Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H: The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 2010, 34(2):171-198.
  • [16]Youm J, Saier MH Jr: Comparative analyses of transport proteins encoded within the genomes of mycobacterium tuberculosis and mycobacterium leprae. Biochim Biophys Acta 2012, 1818(3):776-797.
  • [17]Saier MH Jr, Tran CV, Barabote RD: TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 2006, 34(Database issue):D181-186.
  • [18]Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C: The transporter classification database: recent advances. Nucleic Acids Res 2009, 37(Database issue):D274-278.
  • [19]Saier MH Jr: Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol 2006, 214(2):75-90.
  • [20]Busch W, Saier MH Jr: The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol 2002, 37(5):287-337.
  • [21]Riess FG, Lichtinger T, Cseh R, Yassin AF, Schaal KP, Benz R: The cell wall porin of Nocardia farcinica: biochemical identification of the channel-forming protein and biophysical characterization of the channel properties. Mol Microbiol 1998, 29(1):139-150.
  • [22]Lichtinger T, Riess FG, Burkovski A, Engelbrecht F, Hesse D, Kratzin HD, Kramer R, Benz R: The low-molecular-mass subunit of the cell wall channel of the Gram-positive Corynebacterium glutamicum. Immunological localization, cloning and sequencing of its gene porA. Eur J Biochem 2001, 268(2):462-469.
  • [23]Ziegler K, Benz R, Schulz GE: A putative alpha-helical porin from Corynebacterium glutamicum. J Mol Biol 2008, 379(3):482-491.
  • [24]Niederweis M: Mycobacterial porins–new channel proteins in unique outer membranes. Mol Microbiol 2003, 49(5):1167-1177.
  • [25]Niederweis M: Nutrient acquisition by mycobacteria. Microbiology 2008, 154(Pt 3):679-692.
  • [26]Chater KF: Genetic regulation of secondary metabolic pathways in Streptomyces. Ciba Found Symp 1992, 171:144-156. discussion 156–162
  • [27]Williamson NR, Fineran PC, Leeper FJ, Salmond GP: The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 2006, 4(12):887-899.
  • [28]Wang B, Dukarevich M, Sun EI, Yen MR, Saier MH Jr: Membrane porters of ATP-binding cassette transport systems are polyphyletic. J Membr Biol 2009, 231(1):1-10.
  • [29]Saier MH Jr: Tracing pathways of transport protein evolution. Mol Microbiol 2003, 48(5):1145-1156.
  • [30]Paulsen IT, Beness AM, Saier MH Jr: Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology 1997, 143(Pt 8):2685-2699.
  • [31]Whitfield C: Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 2006, 75:39-68.
  • [32]Ellermeier CD, Hobbs EC, Gonzalez-Pastor JE, Losick R: A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 2006, 124(3):549-559.
  • [33]Bhat S, Zhu X, Patel RP, Orlando R, Shimkets LJ: Identification and localization of Myxococcus xanthus porins and lipoproteins. PLoS One 2011, 6(11):e27475.
  • [34]Bretscher AP, Kaiser D: Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J Bacteriol 1978, 133(2):763-768.
  • [35]Konovalova A, Petters T, Sogaard-Andersen L: Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 2010, 34(2):89-106.
  • [36]Karlin S, Brocchieri L, Mrazek J, Kaiser D: Distinguishing features of delta-proteobacterial genomes. Proc Natl Acad Sci USA 2006, 103(30):11352-11357.
  • [37]Chang AB, Lin R, Keith Studley W, Tran CV, Saier MH Jr: Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 2004, 21(3):171-181.
  • [38]Lam VH, Lee JH, Silverio A, Chan H, Gomolplitinant KM, Povolotsky TL, Orlova E, Sun EI, Welliver CH, Saier MH Jr: Pathways of transport protein evolution: recent advances. Biol Chem 2011, 392(1–2):5-12.
  • [39]Liebeskind BJ, Hillis DM, Zakon HH: Phylogeny unites animal sodium leak channels with fungal calcium channels in an ancient, voltage-insensitive clade. Mol Biol Evol 2012, 29(12):3613-6.
  • [40]Raja M: The potassium channel KcsA: a model protein in studying membrane protein oligomerization and stability of oligomeric assembly? Arch Biochem Biophys 2011, 510(1):1-10.
  • [41]Danielson JA, Johanson U: Phylogeny of major intrinsic proteins. Adv Exp Med Biol 2010, 679:19-31.
  • [42]Booth IR, Blount P: The MscS and MscL Families of Mechanosensitive channels act as microbial emergency release valves. J Bacteriol 2012, 194(18):4802-4809.
  • [43]Barabote RD, Rendulic S, Schuster SC, Saier MH Jr: Comprehensive analysis of transport proteins encoded within the genome of Bdellovibrio bacteriovorus. Genomics 2007, 90(4):424-446.
  • [44]Maier RV, Hahnel GB, Pohlman TH: Endotoxin requirements for alveolar macrophage stimulation. J Trauma 1990, 30(12 Suppl):S49-57.
  • [45]Hagan CL, Silhavy TJ: Kahne D: beta-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 2011, 80:189-210.
  • [46]Freinkman E, Okuda S, Ruiz N, Kahne D: Regulated assembly of the transenvelope protein complex required for lipopolysaccharide export. Biochemistry 2012, 51(24):4800-4806.
  • [47]Chng SS, Xue M, Garner RA, Kadokura H, Boyd D, Beckwith J, Kahne D: Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export. Science 2012, 337(6102):1665-8.
  • [48]Pao SS, Paulsen IT, Saier MH Jr: Major facilitator superfamily. Microbiol Mol Biol Rev 1998, 62(1):1-34.
  • [49]Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr: The major facilitator superfamily (MFS) revisited. Febs J 2012, 279(11):2022-2035.
  • [50]Winkler HH, Neuhaus HE: Non-mitochondrial ATP transport. Trends Biochem Sci 1999, 24(2):64-68.
  • [51]Haferkamp I, Schmitz-Esser S, Wagner M, Neigel N, Horn M, Neuhaus HE: Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila. Mol Microbiol 2006, 60(6):1534-1545.
  • [52]Zhang Y, Ducret A, Shaevitz J, Mignot T: From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus. FEMS Microbiol Rev 2012, 36(1):149-164.
  • [53]Nijnik A, Clare S, Hale C, Chen J, Raisen C, Mottram L, Lucas M, Estabel J, Ryder E, Adissu H, et al.: The role of sphingosine-1-phosphate transporter Spns2 in immune system function. J Immunol 2012, 189(1):102-111.
  • [54]Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, et al.: The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 2012, 122(4):1416-1426.
  • [55]Yanagisawa H, Miyashita T, Nakano Y, Yamamoto D: HSpin1, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death. Cell Death Differ 2003, 10(7):798-807.
  • [56]Vastermark A, Jacobsson JA, Johansson A, Fredriksson R, Gyllensten U, Schioth HB: Polymorphisms in sh2b1 and spns1 loci are associated with triglyceride levels in a healthy population in northern Sweden. J Genet 2012, 91(2):237-240.
  • [57]Keck M, Gisch N, Moll H, Vorholter FJ, Gerth K, Kahmann U, Lissel M, Lindner B, Niehaus K, Holst O: Unusual outer membrane lipid composition of the gram-negative, lipopolysaccharide-lacking myxobacterium Sorangium cellulosum So ce56. J Biol Chem 2011, 286(15):12850-12859.
  • [58]Jack DL, Paulsen IT, Saier MH: The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 2000, 146(Pt 8):1797-1814.
  • [59]Wong FH, Chen JS, Reddy V, Day JL, Shlykov MA, Wakabayashi ST, Saier MH Jr: The amino acid-polyamine-organocation superfamily. J Mol Microbiol Biotechnol 2012, 22(2):105-113.
  • [60]Haney CJ, Grass G, Franke S, Rensing C: New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 2005, 32(6):215-226.
  • [61]Hantke K: Bacterial zinc uptake and regulators. Curr Opin Microbiol 2005, 8(2):196-202.
  • [62]Blair JM, Piddock LJ: Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr Opin Microbiol 2009, 12(5):512-519.
  • [63]Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr: The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1999, 1(1):107-125.
  • [64]Moraleda-Munoz A, Perez J, Extremera AL, Munoz-Dorado J: Differential regulation of six heavy metal efflux systems in the response of Myxococcus xanthus to copper. Appl Environ Microbiol 2010, 76(18):6069-6076.
  • [65]Ardourel M, Demont N, Debelle F, Maillet F, de Billy F, Prome JC, Denarie J, Truchet G: Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 1994, 6(10):1357-1374.
  • [66]Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, et al.: Structure and function of a membrane component SecDF that enhances protein export. Nature 2011, 474(7350):235-238.
  • [67]Pasca MR, Guglierame P, De Rossi E, Zara F, Riccardi G: MmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob Agents Chemother 2005, 49(11):4775-4777.
  • [68]Doughty DM, Coleman ML, Hunter RC, Sessions AL, Summons RE, Newman DK: The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1. Proc Natl Acad Sci U S A 2011, 108(45):E1045-1051.
  • [69]Jack DL, Yang NM, Saier MH Jr: The drug/metabolite transporter superfamily. Eur J Biochem 2001, 268(13):3620-3639.
  • [70]Dalbey RE, Wang P, Kuhn A: Assembly of bacterial inner membrane proteins. Annu Rev Biochem 2011, 80:161-187.
  • [71]Saller MJ, Fusetti F, Driessen AJ: Bacillus subtilis SpoIIIJ and YqjG function in membrane protein biogenesis. J Bacteriol 2009, 191(21):6749-6757.
  • [72]Otani M, Kozuka S, Xu C, Umezawa C, Sano K, Inouye S: Protein W, a spore-specific protein in Myxococcus xanthus, formation of a large electron-dense particle in a spore. Mol Microbiol 1998, 30(1):57-66.
  • [73]Kuner JM, Kaiser D: Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J Bacteriol 1982, 151(1):458-461.
  • [74]Kim YM, Kim JH: Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3(2). J Microbiol 2004, 42(1):64-67.
  • [75]Elizarov SM, Danilenko VN: Multiple phosphorylation of membrane-associated calcium-dependent protein serine/threonine kinase in Streptomyces fradiae. FEMS Microbiol Lett 2001, 202(1):135-138.
  • [76]Padan E, Bibi E, Ito M, Krulwich TA: Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 2005, 1717(2):67-88.
  • [77]Yen MR, Tseng YH, Nguyen EH, Wu LF, Saier MH Jr: Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol 2002, 177(6):441-450.
  • [78]Palmer T, Berks BC: The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 2012, 10(7):483-496.
  • [79]Hvorup RN, Winnen B, Chang AB, Jiang Y, Zhou XF, Saier MH Jr: The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem 2003, 270(5):799-813.
  • [80]Ruiz N: Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc Natl Acad Sci U S A 2008, 105(40):15553-15557.
  • [81]Vasudevan P, McElligott J, Attkisson C, Betteken M, Popham DL: Homologues of the Bacillus subtilis SpoVB protein are involved in cell wall metabolism. J Bacteriol 2009, 191(19):6012-6019.
  • [82]Fay A, Dworkin J: Bacillus subtilis homologs of MviN (MurJ), the putative Escherichia coli lipid II flippase, are not essential for growth. J Bacteriol 2009, 191(19):6020-6028.
  • [83]Mohammadi T, van Dam V, Sijbrandi R, Vernet T, Zapun A, Bouhss A, Diepeveen-de Bruin M, Nguyen-Disteche M, de Kruijff B, Breukink E: Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. Embo J 2011, 30(8):1425-1432.
  • [84]Hu W, Wang J, McHardy I, Lux R, Yang Z, Li Y, Shi W: Effects of exopolysaccharide production on liquid vegetative growth, stress survival, and stationary phase recovery in Myxococcus xanthus. J Microbiol 2012, 50(2):241-248.
  • [85]Garza AG, Harris BZ, Pollack JS, Singer M: The asgE locus is required for cell-cell signalling during Myxococcus xanthus development. Mol Microbiol 2000, 35(4):812-824.
  • [86]McCormick JR, Flardh K: Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 2012, 36(1):206-231.
  • [87]Atkinson S, Williams P: Quorum sensing and social networking in the microbial world. J R Soc Interface 2009, 6(40):959-978.
  • [88]Rettner RE, Saier MH Jr: The autoinducer-2 exporter superfamily. J Mol Microbiol Biotechnol 2010, 18(4):195-205.
  • [89]Shlykov MA, Zheng WH, Chen JS, Saier MH Jr: Bioinformatic characterization of the 4-Toluene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins. Biochim Biophys Acta 2012, 1818(3):703-717.
  • [90]Thever MD, Saier MH Jr: Bioinformatic characterization of p-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. J Membr Biol 2009, 229(3):115-130.
  • [91]Chan H, Babayan V, Blyumin E, Gandhi C, Hak K, Harake D, Kumar K, Lee P, Li TT, Liu HY, et al.: The P-type ATPase superfamily. J Mol Microbiol Biotechnol 2010, 19(1–2):5-104.
  • [92]Hassani BK, Astier C, Nitschke W, Ouchane S: CtpA, a copper-translocating P-type ATPase involved in the biogenesis of multiple copper-requiring enzymes. J Biol Chem 2010, 285(25):19330-19337.
  • [93]Campos M, Cisneros DA, Nivaskumar M, Francetic O: The type II secretion system - a dynamic fiber assembly nanomachine. Res Microbiol 2013, 164(6):545-555.
  • [94]Chatterjee S, Chaudhury S, McShan AC, Kaur K, De Guzman RN: Structure and biophysics of type III secretion in bacteria. Biochemistry 2013, 52(15):2508-2517.
  • [95]Barabote RD, Saier MH Jr: Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 2005, 69(4):608-634.
  • [96]Van Baak DA, Hollberg L: Proposed sum-and-difference method for optical-frequency measurement in the near infrared. Opt Lett 1994, 19(19):1586-1588.
  • [97]Nothaft H, Parche S, Kamionka A, Titgemeyer F: In vivo analysis of HPr reveals a fructose-specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor. J Bacteriol 2003, 185(3):929-937.
  • [98]Nothaft H, Dresel D, Willimek A, Mahr K, Niederweis M, Titgemeyer F: The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol 2003, 185(23):7019-7023.
  • [99]Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Muller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, et al.: The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 2006, 61(5):1237-1251.
  • [100]Colson S, van Wezel GP, Craig M, Noens EE, Nothaft H, Mommaas AM, Titgemeyer F, Joris B, Rigali S: The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology 2008, 154(Pt 2):373-382.
  • [101]Kelley DR, Liu B, Delcher AL, Pop M, Salzberg SL: Gene prediction with Glimmer for metagenomic sequences augmented by classification and clustering. Nucleic Acids Res 2012, 40(1):e9.
  • [102]Wang CX, Ge HX, Hou XP, Li YQ: Roles of larger conductance mechanosensitive channels (MscL) in sporulation and Act secretion in Streptomyces coelicolor. J Basic Microbiol 2007, 47(6):518-524.
  • [103]van Wezel GP, Mahr K, Konig M, Traag BA, Pimentel-Schmitt EF, Willimek A, Titgemeyer F: GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 2005, 55(2):624-636.
  • [104]Hayashi T, Tanaka Y, Sakai N, Okada U, Yao M, Watanabe N, Tamura T, Tanaka I: SCO4008, a putative TetR transcriptional repressor from streptomyces coelicolor A3(2), regulates transcription of sco4007 by multidrug recognition. J Mol Biol 2013, 425(18):3289-3300.
  • [105]Santos-Beneit F, Rodriguez-Garcia A, Franco-Dominguez E, Martin JF: Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology 2008, 154(Pt 8):2356-2370.
  • [106]Saito A, Ebise H, Orihara Y, Murakami S, Sano Y, Kimura A, Sugiyama Y, Ando A, Fujii T, Miyashita K: Enzymatic and genetic characterization of the DasD protein possessing N-acetyl-beta-d-glucosaminidase activity in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 2013, 340(1):33-40.
  • [107]Hillerich B, Westpheling J: A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacteriol 2006, 188(21):7477-7487.
  • [108]van Wezel GP, White J, Bibb MJ, Postma PW: The malEFG gene cluster of Streptomyces coelicolor A3(2): characterization, disruption and transcriptional analysis. Mol Gen Genet 1997, 254(5):604-608.
  • [109]Swiatek MA, Gubbens J, Bucca G, Song E, Yang YH, Laing E, Kim BG, Smith CP, van Wezel GP: The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in Streptomyces coelicolor. J Bacteriol 2013, 195(6):1236-1248.
  • [110]Shin SK, Park HS, Kwon HJ, Yoon HJ, Suh JW: Genetic characterization of two S-adenosylmethionine-induced ABC transporters reveals their roles in modulations of secondary metabolism and sporulation in Streptomyces coelicolor M145. J Microbiol Biotechnol 2007, 17(11):1818-1825.
  • [111]Akanuma G, Ueki M, Ishizuka M, Ohnishi Y, Horinouchi S: Control of aerial mycelium formation by the BldK oligopeptide ABC transporter in Streptomyces griseus. FEMS Microbiol Lett 2011, 315(1):54-62.
  • [112]Chavez A, Forero A, Sanchez M, Rodriguez-Sanoja R, Mendoza-Hernandez G, Servin-Gonzalez L, Sanchez B, Garcia-Huante Y, Rocha D, Langley E, et al.: Interaction of SCO2127 with BldKB and its possible connection to carbon catabolite regulation of morphological differentiation in Streptomyces coelicolor. Appl Microbiol Biotechnol 2011, 89(3):799-806.
  • [113]Barona-Gomez F, Lautru S, Francou FX, Leblond P, Pernodet JL, Challis GL: Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology 2006, 152(Pt 11):3355-3366.
  • [114]Gominet M, Seghezzi N, Mazodier P: Acyl depsipeptide (ADEP) resistance in Streptomyces. Microbiology 2011, 157(Pt 8):2226-2234.
  • [115]San Paolo S, Huang J, Cohen SN, Thompson CJ: Rag genes: novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor. Mol Microbiol 2006, 61(5):1167-1186.
  • [116]Shin JH, Singh AK, Cheon DJ, Roe JH: Activation of the SoxR regulon in Streptomyces coelicolor by the extracellular form of the pigmented antibiotic actinorhodin. J Bacteriol 2011, 193(1):75-81.
  • [117]Lee SK, Mo S, Suh JW: An ABC transporter complex containing S-adenosylmethionine (SAM)-induced ATP-binding protein is involved in antibiotics production and SAM signaling in Streptomyces coelicolor M145. Biotechnol Lett 2012, 34(10):1907-1914.
  • [118]Hirono M, Nakanishi Y, Maeshima M: Identification of amino acid residues participating in the energy coupling and proton transport of Streptomyces coelicolor A3(2) H + -pyrophosphatase. Biochim Biophys Acta 2007, 1767(12):1401-1411.
  • [119]Kimura Y, Ishida S, Matoba H, Okahisa N: A Myxococcus xanthus rppA-mmrA double mutant exhibits reduced uptake of amino acids and tolerance of some antimicrobials. FEMS Microbiol Lett 2004, 238(1):145-150.
  • [120]Kimura Y, Saiga H, Hamanaka H, Matoba H: Myxococcus xanthus twin-arginine translocation system is important for growth and development. Arch Microbiol 2006, 184(6):387-396.
  • [121]Guo D, Bowden MG, Pershad R, Kaplan HB: The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development. J Bacteriol 1996, 178(6):1631-1639.
  • [122]Ward MJ, Mok KC, Astling DP, Lew H, Zusman DR: An ABC transporter plays a developmental aggregation role in Myxococcus xanthus. J Bacteriol 1998, 180(21):5697-5703.
  • [123]Wu SS, Wu J, Cheng YL, Kaiser D: The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol Microbiol 1998, 29(5):1249-1261.
  • [124]Kuan G, Dassa E, Saurin W, Hofnung M, Saier MH Jr: Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res Microbiol 1995, 146(4):271-278.
  • [125]Zhou Z, Gu J, Du YL, Li YQ, Wang Y: The -omics Era- toward a systems-level understanding of Streptomyces. Curr Genomics 2011, 12(6):404-416.
  • [126]Seipke RF, Kaltenpoth M, Hutchings MI: Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 2012, 36(4):862-876.
  • [127]Whitworth DE: Myxobacterial vesicles: death at a distance? Adv Appl Microbiol 2011, 75:1-31.
  • [128]Li Y, Muller R: Non-modular polyketide synthases in myxobacteria. Phytochemistry 2009, 70(15–16):1850-1857.
  • [129]Berleman JE, Kirby JR: Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 2009, 33(5):942-957.
  • [130]Youderian P, Burke N, White DJ, Hartzell PL: Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 2003, 49(2):555-570.
  • [131]Saier MH Jr: Structure and evolution of prokaryotic cell types. Microbe 2008, 3(7):6.
  • [132]Reddy VS, Saier MH Jr: BioV Suite–a collection of programs for the study of transport protein evolution. Febs J 2012, 279(11):2036-2046.
  • [133]Ikeda M, Arai M, Lao DM, Shimizu T: Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico Biol 2002, 2(1):19-33.
  • [134]Zhai Y, Saier MH Jr: A web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. J Mol Microbiol Biotechnol 2001, 3(4):501-502.
  • [135]Harvat EM, Zhang YM, Tran CV, Zhang Z, Frank MW, Rock CO, Saier MH Jr: Lysophospholipid flipping across the Escherichia coli inner membrane catalyzed by a transporter (LplT) belonging to the major facilitator superfamily. J Biol Chem 2005, 280(12):12028-12034.
  • [136]Felce J, Saier MH Jr: Carbonic anhydrases fused to anion transporters of the SulP family: evidence for a novel type of bicarbonate transporter. J Mol Microbiol Biotechnol 2004, 8(3):169-176.
  • [137]Zhang Z, Feige JN, Chang AB, Anderson IJ, Brodianski VM, Vitreschak AG, Gelfand MS, Saier MH Jr: A transporter of Escherichia coli specific for L- and D-methionine is the prototype for a new family within the ABC superfamily. Arch Microbiol 2003, 180(2):88-100.
  文献评价指标  
  下载次数:24次 浏览次数:29次