期刊论文详细信息
BMC Genomics
Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes
Shota Nakamura3  Masahiro Kasahara6  Kazuharu Arakawa2  Toshihiro Horii3  Teruo Yasunaga3  Tetsuya Iida3  Naohisa Goto3  Kazutoshi Yoshitake4  Takamasa Imai6  Kazuyoshi Gotoh5  Daisuke Motooka3  Mari Miyamoto1 
[1] CLC bio Japan Inc., a QIAGEN Company, 204 Daikanyama Park Side Village, 9-8 Sarugakucho, Shibuya-ku, Tokyo 150-0033, Japan;Institute for Advanced Biosciences, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan;Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan;Laboratory of DNA Data Analysis, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan;Department of Bacteriology, Okayama University Graduate School of Medicine, 2-5-1 Kita-ku Shikata-cho, Okayama 700-8558, Japan;Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
关键词: PacBio RS system;    Roche 454 GS Junior;    Ion Torrent PGM;    Illumina MiSeq;    de novo assembly;    Next-generation sequencing;   
Others  :  1216252
DOI  :  10.1186/1471-2164-15-699
 received in 2014-05-15, accepted in 2014-08-15,  发布年份 2014
PDF
【 摘 要 】

Background

The availability of diverse second- and third-generation sequencing technologies enables the rapid determination of the sequences of bacterial genomes. However, identifying the sequencing technology most suitable for producing a finished genome with multiple chromosomes remains a challenge. We evaluated the abilities of the following three second-generation sequencers: Roche 454 GS Junior (GS Jr), Life Technologies Ion PGM (Ion PGM), and Illumina MiSeq (MiSeq) and a third-generation sequencer, the Pacific Biosciences RS sequencer (PacBio), by sequencing and assembling the genome of Vibrio parahaemolyticus, which consists of a 5-Mb genome comprising two circular chromosomes.

Results

We sequenced the genome of V. parahaemolyticus with GS Jr, Ion PGM, MiSeq, and PacBio and performed de novo assembly with several genome assemblers. Although GS Jr generated the longest mean read length of 418 bp among the second-generation sequencers, the maximum contig length of the best assembly from GS Jr was 165 kbp, and the number of contigs was 309. Single runs of Ion PGM and MiSeq produced data of considerably greater sequencing coverage, 279× and 1,927×, respectively. The optimized result for Ion PGM contained 61 contigs assembled from reads of 77× coverage, and the longest contig was 895 kbp in size. Those for MiSeq were 34 contigs, 58× coverage, and 733 kbp, respectively. These results suggest that higher coverage depth is unnecessary for a better assembly result. We observed that multiple rRNA coding regions were fragmented in the assemblies from the second-generation sequencers, whereas PacBio generated two exceptionally long contigs of 3,288,561 and 1,875,537 bps, each of which was from a single chromosome, with 73× coverage and mean read length 3,119 bp, allowing us to determine the absolute positions of all rRNA operons.

Conclusions

PacBio outperformed the other sequencers in terms of the length of contigs and reconstructed the greatest portion of the genome, achieving a genome assembly of “finished grade” because of its long reads. It showed the potential to assemble more complex genomes with multiple chromosomes containing more repetitive sequences.

【 授权许可】

   
2014 Miyamoto et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629095913116.pdf 1887KB PDF download
Figure 1. 258KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B: Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci 2003, 100:8817-8822.
  • [2]Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, et al.: An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475:348-352.
  • [3]Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, et al.: Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456:53-59.
  • [4]Dohm JC, Lottaz C, Borodina T, Himmelbauer H: Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 2008, 36:e105-114.
  • [5]Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Res 2009, 19:1117-1123.
  • [6]Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB: High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 2011, 108:1513-1518.
  • [7]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18:821-829.
  • [8]Zerbino DR, McEwen GK, Margulies EH, Birney E: Pebble and rock band: heuristic resolution of repeats and scaffolding in the velvet short-read de novo assembler. PLoS One 2009, 4:e8407-8415.
  • [9]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20:265-272.
  • [10]Chaisson MJ, Brinza D, Pevzner PA: De novo fragment assembly with short mate-paired reads: Does the read length matter? Genome Res 2009, 19:336-46.
  • [11]Wetzel J, Kingsford C, Pop M: Assessing the benefits of using mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies. BMC Bioinformatics 2011, 12:95. BioMed Central Full Text
  • [12]Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, et al.: Real-time DNA sequencing from single polymerase molecules. Science 2009, 323:133-138.
  • [13]Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy AM: Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 2012, 30:693-700.
  • [14]Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J: Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013, 10:563-569.
  • [15]Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, McVey SD, Radune D, Bergman NH, Phillippy AM: Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 2013, 14:R101-116. BioMed Central Full Text
  • [16]Bashir A, Klammer AA, Robins WP, Chin CS, Webster D, Paxinos E, Hsu D, Ashby M, Wang S, Peluso P, Sebra R, Sorenson J, Bullard J, Yen J, Valdovino M, Mollova E, Luong K, Lin S, LaMay B, Joshi A, Rowe L, Frace M, Tarr CL, Turnsek M, Davis BM, Kasarskis A, Mekalanos JJ, Waldor MK, Schadt EE: A hybrid approach for the automated finishing of bacterial genomes. Nat Biotechnol 2012, 30:701-707.
  • [17]Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M: Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012, 2012:251364-251374.
  • [18]Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y: A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012, 13:341-353. BioMed Central Full Text
  • [19]Glenn TC: Field guide to next-generation DNA sequencers. Mol Ecol Resour 2011, 11:759-769.
  • [20]Powers JG, Weigman VJ, Shu J, Pufky JM, Cox D, Hurban P: Efficient and accurate whole genome assembly and methylome profiling of E. coli. BMC Genomics 2013, 14:675-692. BioMed Central Full Text
  • [21]Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T: Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 2003, 361:743-749.
  • [22]Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ: Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 2012, 30:434-439.
  • [23]Gurevich A, Saveliev V, Vyahhi N, Tesler G: QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013, 29:1072-1075.
  • [24]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437:376-380.
  • [25]Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Ishikawa S, Linak MC, Hirai A, Takahashi H, Altaf-Ul-Amin M, Ogasawara N, Kanaya S: Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 2011, 39:e90-102.
  • [26]Sprai [ http://zombie.cb.k.u-tokyo.ac.jp/sprai/index.html webcite]
  • [27]Schadt EE, Turner S, Kasarskis A: A window into third-generation sequencing. Hum Mol Genet 2010, 19:R227-240.
  • [28]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information esthetic for comparative genomics. Genome Res 2009, 19:1639-1645.
  • [29]Ganapathy G, Howard JT, Ward JM, Li J, Li B, Li Y, Xiong Y, Zhang Y, Zhou S, Schwartz DC, Schatz M, Aboukhalil R, Fedrigo O, Bukovnik L, Wang T, Wray G, Rasolonjatovo I, Winer R, Knight JR, Koren S, Warren WC, Zhang G, Phillippy AM, Jarvis ED: High-coverage sequencing and annotated assemblies of the budgerigar genome. Gigascience 2014, 3:11. BioMed Central Full Text
  • [30]Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS: The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 2013, 79:4620-4634.
  • [31]Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S, Chapman JA, Chapuis G, Chikhi R, Chitsaz H, Chou W-C, Corbeil J, Del Fabbro C, Docking TR, Durbin R, Earl D, Emrich S, Fedotov P, Fonseca NA, Ganapathy G, Gibbs RA, Gnerre S, Godzaridis E, Goldstein S, Haimel M, Hall G, Haussler D, Hiatt JB, Ho IY, et al.: Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience 2013, 2:10. BioMed Central Full Text
  文献评价指标  
  下载次数:81次 浏览次数:303次