BMC Genomics | |
Chromatin states reveal functional associations for globally defined transcription start sites in four human cell lines | |
Finn Drabløs1  Alistair RR Forrest4  Piero Carninci4  Hideya Kawaji3  Carsten O Daub4  Geir Kjetil Sandve5  Morten Rye2  | |
[1] Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, P.O. Box 8905, NO-7491 Trondheim, Norway;St. Olavs Hospital, Postboks 3250, Sluppen 7006, Trondheim;RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan;RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan;Department of Informatics, University of Oslo, Oslo, Norway | |
关键词: Gene expression; Chromatin states; Transcription start sites; Cage; Encode; Fantom; | |
Others : 1217632 DOI : 10.1186/1471-2164-15-120 |
|
received in 2013-05-21, accepted in 2013-12-07, 发布年份 2014 | |
【 摘 要 】
Background
Deciphering the most common modes by which chromatin regulates transcription, and how this is related to cellular status and processes is an important task for improving our understanding of human cellular biology. The FANTOM5 and ENCODE projects represent two independent large scale efforts to map regulatory and transcriptional features to the human genome. Here we investigate chromatin features around a comprehensive set of transcription start sites in four cell lines by integrating data from these two projects.
Results
Transcription start sites can be distinguished by chromatin states defined by specific combinations of both chromatin mark enrichment and the profile shapes of these chromatin marks. The observed patterns can be associated with cellular functions and processes, and they also show association with expression level, location relative to nearby genes, and CpG content. In particular we find a substantial number of repressed inter- and intra-genic transcription start sites enriched for active chromatin marks and Pol II, and these sites are strongly associated with immediate-early response processes and cell signaling. Associations between start sites with similar chromatin patterns are validated by significant correlations in their global expression profiles.
Conclusions
The results confirm the link between chromatin state and cellular function for expressed transcripts, and also indicate that active chromatin states at repressed transcripts may poise transcripts for rapid activation during immune response.
【 授权许可】
2014 Rye et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150707140934572.pdf | 2739KB | download | |
Figure 9. | 50KB | Image | download |
Figure 8. | 99KB | Image | download |
Figure 7. | 109KB | Image | download |
Figure 6. | 87KB | Image | download |
Figure 5. | 241KB | Image | download |
Figure 4. | 168KB | Image | download |
Figure 3. | 44KB | Image | download |
Figure 2. | 123KB | Image | download |
Figure 1. | 60KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Li B, Carey M, Workman JL: The role of chromatin during transcription. Cell 2007, 128:707-719.
- [2]Kouzarides T: Chromatin modifications and their function. Cell 2007, 128:693-705.
- [3]Kanamori-Katayama M, Itoh M, Kawaji H, Lassmann T, Katayama S, Kojima M, Bertin N, Kaiho A, Ninomiya N, Daub CO, et al.: Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res 2011, 21:1150-1159.
- [4]Forrest ARR, Kawaji H, Rehli M, Baillie JK, de Hoon MJL, Haberle V, Lassmann T, Kulakovskiy IV, Lizio M, Itoh M, et al.: A promoter level mammalian expression atlas. Nature 2014. http://dx.doi.org/10.1038/nature13182 webcite
- [5]Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, et al.: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
- [6]Johnson DS, Mortazavi A, Myers RM, Wold B: Genome-wide mapping of in vivo protein-DNA interactions. Science 2007, 316:1497-1502.
- [7]Park PJ: ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009, 10:669-680.
- [8]Bernstein BE, Meissner A, Lander ES: The mammalian epigenome. Cell 2007, 128:669-681.
- [9]Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE: High-resolution mapping and characterization of open chromatin across the genome. Cell 2008, 132:311-322.
- [10]Ernst J, Kellis M: Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 2010, 28:817-825.
- [11]Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, et al.: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473:43-49.
- [12]Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, Sabo PJ, Larschan E, Gorchakov AA, Gu T, et al.: Comprehensive analysis of the chromatin landscape in drosophila melanogaster. Nature 2011, 471:480-485.
- [13]Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K: Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 2008, 40:897-903.
- [14]Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, et al.: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009, 459:108-112.
- [15]Hon G, Wang W, Ren B: Discovery and annotation of functional chromatin signatures in the human genome. PLoS Comput Biol 2009, 5:e1000566.
- [16]Wang J, Lunyak VV, Jordan IK: Chromatin signature discovery via histone modification profile alignments. Nucleic Acids Res 2012, 40:10642-10656.
- [17]Kundaje A, Kyriazopoulou-Panagiotopoulou S, Libbrecht M, Smith CL, Raha D, Winters EE, Johnson SM, Snyder M, Batzoglou S, Sidow A: Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Genome Res 2012, 22:1735-1747.
- [18]Won KJ, Ren B, Wang W: Genome-wide prediction of transcription factor binding sites using an integrated model. Genome Biol 2010, 11:R7. BioMed Central Full Text
- [19]Zentner GE, Tesar PJ, Scacheri PC: Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res 2011, 21:1273-1283.
- [20]Kalari KR, Rossell D, Necela BM, Asmann YW, Nair A, Baheti S, Kachergus JM, Younkin CS, Baker T, Carr JM, et al.: Deep sequence analysis of non-small cell lung cancer: integrated analysis of gene expression, alternative splicing, and single nucleotide variations in lung adenocarcinomas with and without oncogenic KRAS mutations. Front Oncol 2012, 2:12.
- [21]Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011, 25:1915-1927.
- [22]De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G: A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 2010, 8:e1000384.
- [23]Flynn RA, Almada AE, Zamudio JR, Sharp PA: Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. Proc Natl Acad Sci U S A 2011, 108:10460-10465.
- [24]Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, et al.: lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011, 477:295-300.
- [25]Ho Y, Elefant F, Liebhaber SA, Cooke NE: Locus control region transcription plays an active role in long-range gene activation. Mol Cell 2006, 23:365-375.
- [26]Kim A, Zhao H, Ifrim I, Dean A: Beta-globin intergenic transcription and histone acetylation dependent on an enhancer. Mol Cell Biol 2007, 27:2980-2986.
- [27]Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, et al.: Long noncoding RNAs with enhancer-like function in human cells. Cell 2010, 143:46-58.
- [28]Ponjavic J, Oliver PL, Lunter G, Ponting CP: Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet 2009, 5:e1000617.
- [29]Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, et al.: A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011, 472:120-124.
- [30]Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, et al.: Widespread transcription at neuronal activity-regulated enhancers. Nature 2010, 465:182-187.
- [31]Bulger M, Groudine M: Functional and mechanistic diversity of distal transcription enhancers. Cell 2011, 144:327-339.
- [32]Bertilsson H, Tessem MB, Flatberg A, Viset T, Gribbestad I, Angelsen A, Halgunset J: Changes in gene transcription underlying the aberrant citrate and choline metabolism in human prostate cancer samples. Clin Cancer Res 2012, 18:3261-3269.
- [33]Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, et al.: Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 2010, 107:21931-21936.
- [34]Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell 2007, 129:823-837.
- [35]Ozsolak F, Song JS, Liu XS, Fisher DE: High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 2007, 25:244-248.
- [36]Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K: Dynamic regulation of nucleosome positioning in the human genome. Cell 2008, 132:887-898.
- [37]McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G: GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 2010, 28:495-501.
- [38]Barski A, Jothi R, Cuddapah S, Cui K, Roh TY, Schones DE, Zhao K: Chromatin poises miRNA- and protein-coding genes for expression. Genome Res 2009, 19:1742-1751.
- [39]John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL, Stamatoyannopoulos JA: Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 2011, 43:264-268.
- [40]Lim PS, Hardy K, Bunting KL, Ma L, Peng K, Chen X, Shannon MF: Defining the chromatin signature of inducible genes in T cells. Genome Biol 2009, 10:R107. BioMed Central Full Text
- [41]Lim PS, Shannon MF, Hardy K: Epigenetic control of inducible gene expression in the immune system. Epigenomics 2010, 2:775-795.
- [42]Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory L, Lonie L, Chew A, Wei CL, et al.: Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 2010, 32:317-328.
- [43]Hargreaves DC, Horng T, Medzhitov R: Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 2009, 138:129-145.
- [44]Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C, Doty KR, Black JC, Hoffmann A, Carey M, Smale ST: A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 2009, 138:114-128.
- [45]Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, et al.: Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 2006, 38:626-635.
- [46]Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J, Mestdagh P: LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 2013, 41:D246-251.
- [47]Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, Portnoy ME, Cutler DJ, Green ED, Chakravarti A: A common sex-dependent mutation in a RET enhancer underlies hirschsprung disease risk. Nature 2005, 434:857-863.
- [48]Visser M, Kayser M, Palstra RJ: HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res 2012, 22:446-455.
- [49]Wasserman NF, Aneas I, Nobrega MA: An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res 2010, 20:1191-1197.
- [50]Zhang X, Cowper-Sal lari R, Bailey SD, Moore JH, Lupien M: Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res 2012, 22:1437-1446.
- [51]Dean A: On a chromosome far, far away: LCRs and gene expression. Trends Genet 2006, 22:38-45.
- [52]Kikuta H, Laplante M, Navratilova P, Komisarczuk AZ, Engstrom PG, Fredman D, Akalin A, Caccamo M, Sealy I, Howe K, et al.: Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res 2007, 17:545-555.
- [53]Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, Goode D, Elgar G, Hill RE, de Graaff E: A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 2003, 12:1725-1735.
- [54]Teng L, Firpi HA, Tan K: Enhancers in embryonic stem cells are enriched for transposable elements and genetic variations associated with cancers. Nucleic Acids Res 2011, 39:7371-7379.
- [55]Visel A, Blow MJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, et al.: ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009, 457:854-858.
- [56]Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, et al.: Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 2006, 16:1299-1309.
- [57]Sanyal A, Lajoie BR, Jain G, Dekker J: The long-range interaction landscape of gene promoters. Nature 2012, 489:109-113.
- [58]Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, et al.: Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 2012, 148:84-98.
- [59]Cohen BA, Mitra RD, Hughes JD, Church GM: A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat Genet 2000, 26:183-186.
- [60]Hurst LD, Pal C, Lercher MJ: The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 2004, 5:299-310.
- [61]Blahnik KR, Dou L, Echipare L, Iyengar S, O’Geen H, Sanchez E, Zhao Y, Marra MA, Hirst M, Costello JF, et al.: Characterization of the contradictory chromatin signatures at the 3’ exons of zinc finger genes. PLoS One 2011, 6:e17121.
- [62]Leach KM, Nightingale K, Igarashi K, Levings PP, Engel JD, Becker PB, Bungert J: Reconstitution of human beta-globin locus control region hypersensitive sites in the absence of chromatin assembly. Mol Cell Biol 2001, 21:2629-2640.
- [63]Zhu X, Ling J, Zhang L, Pi W, Wu M, Tuan D: A facilitated tracking and transcription mechanism of long-range enhancer function. Nucleic Acids Res 2007, 35:5532-5544.
- [64]Giskeodegard GF, Bertilsson H, Selnaes KM, Wright AJ, Bathen TF, Viset T, Halgunset J, Angelsen A, Gribbestad IS, Tessem MB: Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 2013, 8:e62375.
- [65]Pal S, Gupta R, Davuluri RV: Alternative transcription and alternative splicing in cancer. Pharmacol Ther 2012, 136:283-294.
- [66]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
- [67]Sandve GK, Gundersen S, Rydbeck H, Glad IK, Holden L, Holden M, Liestol K, Clancy T, Ferkingstad E, Johansen M, et al.: The genomic HyperBrowser: inferential genomics at the sequence level. Genome Biol 2010, 11:R121. BioMed Central Full Text
- [68]Calculated p-values for repressed RTSS overlapping with active chromatin marks http://hyperbrowser.uio.no/hb/u/sandve/h/rtss-vs-reference-biofeature webcite
- [69]Steiger JH: Tests for comparing elements of a correlation matrix. Psychol Bull 1980, 87:245-251.
- [70]Calculated p-value for CpG-island enrichment in poised RTSS shared by all cell-lines http://hyperbrowser.uio.no/test/u/sandve/p/CTSS-cpg-analysis webcite