期刊论文详细信息
BMC Medicine
Potential immunological consequences of pharmacological suppression of gastric acid production in patients with multiple sclerosis
Steven M LeVine2  Sharon G Lynch4  Stephen H Benedict1  Sangita Biswas3 
[1]Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
[2]Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
[3]Institute of Pediatric Regenerative Medicine, University of California Davis, Sacramento, CA, USA
[4]Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
关键词: proton pump inhibitor;    multiple sclerosis;    histamine receptor 2 antagonists;    GERD;    experimental autoimmune encephalomyelitis;    dyspepsia;    autoimmune;    Antacid;   
Others  :  1126126
DOI  :  10.1186/1741-7015-10-57
 received in 2012-02-24, accepted in 2012-06-07,  发布年份 2012
PDF
【 摘 要 】

Corticosteroids are standard treatment for patients with multiple sclerosis experiencing acute relapse. Because dyspeptic pain is a common side effect of this intervention, patients can be given a histamine receptor-2 antagonist, proton pump inhibitor or antacid to prevent or ameliorate this disturbance. Additionally, patients with multiple sclerosis may be taking these medications independent of corticosteroid treatment. Interventions for gastric disturbances can influence the activation state of the immune system, a principal mediator of pathology in multiple sclerosis. Although histamine release promotes inflammation, activation of the histamine receptor-2 can suppress a proinflammatory immune response, and blocking histamine receptor-2 with an antagonist could shift the balance more towards immune stimulation. Studies utilizing an animal model of multiple sclerosis indicate that histamine receptor-2 antagonists potentially augment disease activity in patients with multiple sclerosis. In contrast, proton pump inhibitors appear to favor immune suppression, but have not been studied in models of multiple sclerosis. Antacids, histamine receptor-2 antagonists and proton pump inhibitors also could alter the intestinal microflora, which may indirectly lead to immune stimulation. Additionally, elevated gastric pH can promote the vitamin B12 deficiency that patients with multiple sclerosis are at risk of developing. Here, we review possible roles of gastric acid inhibitors on immunopathogenic mechanisms associated with multiple sclerosis.

【 授权许可】

   
2012 Biswas et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150218073957285.pdf 330KB PDF download
【 参考文献 】
  • [1]Zinkievich JM, George S, Jha S, Nandi J, Levine RA: Gastric acid is the key modulator in the pathogenesis of non-steroidal anti-inflammatory drug-induced ulceration in rats. Clin Exp Pharmacol Physiol 2010, 37:654-661.
  • [2]Frohman EM, Shah A, Eggenberger E, Metz L, Zivadinov R, Stüve O: Corticosteroids for multiple sclerosis: I. Application for treating exacerbations. Neurotherapeutics 2007, 4:618-626.
  • [3]Raptis S, von Berger L, Dollinger HC, Fazekas AA, Pfeiffer EF: Hypergastrinemia induced by glucocorticoid and corticotropin treatment in man. Am J Dig Dis 1976, 21:376-380.
  • [4]Lyons PR, Newman PK, Saunders M: Methylprednisolone therapy in multiple sclerosis: a profile of adverse effects. J Neurol Neurosurg Psychiatry 1988, 51:285-287.
  • [5]Sellebjerg F, Barnes D, Filippini G, Midgard R, Montalban X, Rieckmann P, Selmaj K, Visser LH, Sørensen PS, EFNS Task Force on Treatment of Multiple Sclerosis Relapses: EFNS guideline on treatment of multiple sclerosis relapses: report of an EFNS task force on treatment of multiple sclerosis relapses. Eur J Neurol 2005, 12:939-946.
  • [6]Thrower BW: Relapse management in multiple sclerosis. Neurologist 2009, 15:1-5.
  • [7]Jutel M, Blaser K, Akdis CA: Histamine in allergic inflammation and immune modulation. Int Arch Allergy Immunol 2005, 137:82-92.
  • [8]Molnár G, Moldován J: Histamine content of the cerebrospinal fluid in multiple sclerosis. A preliminary communication. Acta Med Acad Sci Hung 1966, 22:271-274.
  • [9]Tuomisto L, Kilpeläinen H, Riekkinen P: Histamine and histamine-N-methyltransferase in the CSF of patients with multiple sclerosis. Agents Actions 1983, 13:255-257.
  • [10]Jadidi-Niaragh F, Mirshafiey A: Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology 2010, 59:180-189.
  • [11]Musio S, Gallo B, Scabeni S, Lapilla M, Poliani PL, Matarese G, Ohtsu H, Galli SJ, Mantegazza R, Steinman L, Pedotti R: A key regulatory role for histamine in experimental autoimmune encephalomyelitis: disease exacerbation in histidine decarboxylase-deficient mice. J Immunol 2006, 176:17-26.
  • [12]Piconese S, Costanza M, Musio S, Tripodo C, Poliani PL, Gri G, Burocchi A, Pittoni P, Gorzanelli A, Colombo MP, Pedotti R: Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit(W-sh/W-sh) mice. Lab Invest 2011, 91:627-641.
  • [13]Pedotti R, DeVoss JJ, Youssef S, Mitchell D, Wedemeyer J, Madanat R, Garren H, Fontoura P, Tsai M, Galli SJ, Sobel RA, Steinman L: Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination. Proc Natl Acad Sci USA 2003, 100:1867-1872.
  • [14]Berlin RG: Effects of H2-receptor antagonists on the central nervous system. Drug Dev Res 1989, 17:97-108.
  • [15]Rieckmann P, Albrecht M, Kitze B, Weber T, Tumani H, Broocks A, Lüer W, Helwig A, Poser S: Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann Neurol 1995, 37:82-88.
  • [16]van Boxel-Dezaire AH, Hoff SC, van Oosten BW, Verweij CL, Dräger AM, Adèr HJ, van Houwelingen JC, Barkhof F, Polman CH, Nagelkerken L: Decreased interleukin-10 and increased interleukin-12p40 mRNA are associated with disease activity and characterize different disease stages in multiple sclerosis. Ann Neurol 1999, 45:695-703.
  • [17]Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH: T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 2008, 125:161-169.
  • [18]Yang JS, Xu LY, Huang YM, van der Meide PH, Link H, Xiao BG: Adherent dendritic cells expressing high levels of interleukin-10 and low levels of interleukin-12 induce antigen-specific tolerance to experimental autoimmune encephalomyelitis. Immunology 2000, 101:397-403.
  • [19]Chitnis T, Khoury SJ: Cytokine shifts and tolerance in experimental autoimmune encephalomyelitis. Immunol Res 2003, 28:223-239.
  • [20]Mekala DJ, Alli RS, Geiger TL: IL-10-dependent infectious tolerance after the treatment of experimental allergic encephalomyelitis with redirected CD4+CD25+ T lymphocytes. Proc Natl Acad Sci USA 2005, 102:11817-11822.
  • [21]Maynard CL, Weaver CT: Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol Rev 2008, 226:219-233.
  • [22]Tran DQ: TGF-β: the sword, the wand, and the shield of FOXP3+ regulatory T cells. J Mol Cell Biol 2012, 4:29-37.
  • [23]Emerson MR, Orentas DM, Lynch SG, LeVine SM: Activation of histamine H2 receptors ameliorates experimental allergic encephalomyelitis. Neuroreport 2002, 13:1407-1410.
  • [24]Lapilla M, Gallo B, Martinello M, Procaccini C, Costanza M, Musio S, Rossi B, Angiari S, Farina C, Steinman L, Matarese G, Constantin G, Pedotti R: Histamine regulates autoreactive T cell activation and adhesiveness in inflamed brain microcirculation. J Leukoc Biol 2011, 89:259-267.
  • [25]Staykova M, Kozovska M, Kirazian N, Goranov I: Aggravation of experimental allergic encephalomyelitis by cimetidine. Ann Inst Pasteur Immunol 1988, 139:501-505.
  • [26]Tasaka K, Kurokawa K, Nakayama Y, Kakimoto M: Effect of histamine on delayed-type hypersensitivity in mice. Immunopharmacology 1986, 12:69-77.
  • [27]Cao J, Lu J, Wu F, Cheng X, Xu Q: Effects of several drugs on the liver injury induced by delayed-type hypersensitivity to picryl chloride by regulating suppressor or helper T cells. Pharmacol Res 1999, 39:97-102.
  • [28]Elenkov IJ, Webster E, Papanicolaou DA, Fleisher TA, Chrousos GP, Wilder RL: Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J Immunol 1998, 161:2586-2593.
  • [29]Dohlsten M, Kalland T, Sjögren HO, Carlsson R: Histamine inhibits interleukin 1 production by lipopolysaccharide-stimulated human peripheral blood monocytes. Scand J Immunol 1988, 27:527-532.
  • [30]Vannier E, Miller LC, Dinarello CA: Histamine suppresses gene expression and synthesis of tumor necrosis factor alpha via histamine H2 receptors. J Exp Med 1991, 174:281-284.
  • [31]van der Pouw Kraan TC, Snijders A, Boeije LC, de Groot ER, Alewijnse AE, Leurs R, Aarden LA: Histamine inhibits the production of interleukin-12 through interaction with H2 receptors. J Clin Invest 1998, 102:1866-1873.
  • [32]Dohlsten M, Sjogren HO, Carlsson R: Histamine acts directly on human T cells to inhibit interleukin-2 and interferon-gamma production. Cell Immunol 1987, 109:65-74.
  • [33]Bissonnette EY: Histamine inhibits tumor necrosis factor alpha release by mast cells through H2 and H3 receptors. Am J Respir Cell Mol Biol 1996, 14:620-626.
  • [34]Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, Myers LW, Panitch HS, Rose JW, Schiffer RB: Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 1995, 45:1268-1276.
  • [35]Polman CH, O'Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW, AFFIRM Investigators: A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006, 354:899-910.
  • [36]Cohen JA, Chun J: Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann Neurol 2011, 69:759-777.
  • [37]Hirasawa N, Ohtsu H, Watanabe T, Ohuchi K: Enhancement of neutrophil infiltration in histidine decarboxylase-deficient mice. Immunology 2002, 107:217-221.
  • [38]Abbott NJ: Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 2000, 20:131-147.
  • [39]Delneste Y, Lassalle P, Jeannin P, Joseph M, Tonnel AB, Gosset P: Histamine induces IL-6 production by human endothelial cells. Clin Exp Immunol 1994, 98:344-349.
  • [40]Pedchenko TV, LeVine SM: IL-6 deficiency causes enhanced pathology in Twitcher (globoid cell leukodystrophy) mice. Exp Neurol 1999, 158:459-468.
  • [41]Swartz KR, Liu F, Sewell D, Schochet T, Campbell I, Sandor M, Fabry Z: Interleukin-6 promotes post-traumatic healing in the central nervous system. Brain Res 2001, 896:86-95.
  • [42]Gifford RRM, Hatfield SM, Schmidtke JR: Cimetidine- induced augmentation of human lymphocyte blastogenesis by mitogen, bacterial antigen, and alloantigen. Transplantation 1980, 29:143-148.
  • [43]Peden NR, Roberson AJ, Boyed EJS, Brown RA, Gibbs RH: Mitogen stimulation of peripheral blood lymphocytes of duodenal ulcer patients during treatment with cimetidine or ranitidine. Gut 1982, 23:398-403.
  • [44]Bury TB, Corhay JL, Radermecker MF: Histamine-induced inhibition of neutrophil chemotaxis and T-lymphocyte proliferation in man. Allergy 1992, 47:624-629.
  • [45]Griswold DE, Alessi S, Badger AM, Poste G, Hanna N: Inhibition of T suppressor cell expression by histamine type 2 (H2) receptor antagonists. J Immunol 1984, 132:3054-3057.
  • [46]Brockmeyer NH, Kreuzfelder E, Bluhm C, Shen G, Scheiermann E, Keinecke HO, Ohnhaus EE: Immunomodulation of cimetidine in healthy volunteers. Klin Wochenschr 1989, 67:26-30.
  • [47]Giulivi A, Cilano L, Roncoroni L, Petrella A, Perrone G, Visca U, Spina MP, Ventura M, Rossi F, Massari A, Santi G: Effects of cimetidine on in vitro transformation of peripheral monocytes to macrophages in healthy volunteers and cancer patients. Int J Immunopharmacol 1986, 8:517-523.
  • [48]Merrill JE, Mohlstrom C: Regulation of antibody-dependent cellular cytotoxicity in multiple sclerosis by central nervous system hormones. Int Arch Allergy Appl Immunol 1987, 82:195-201.
  • [49]Sahasrabudhe DM, McCune CS, O'Donnell RW, Henshaw EC: Inhibition of suppressor T lymphocytes (Ts) by cimetidine. J Immunol 1987, 138:2760-2763.
  • [50]Wang J, Su B, Ding Z, Du X, Wang B: Cimetidine enhances immune response of HBV DNA vaccination via impairment of the regulatory function of regulatory T cells. Biochem Biophys Res Commun 2008, 372:491-496.
  • [51]Ershler WB, Hacker MP, Burroughs BJ, Moore AL, Myers CF: Cimetidine and the immune response. I. In vivo augmentation of nonspecific and specific immune response. Clin Immunol Immunopathol 1983, 26:10-17.
  • [52]Rixen D, Livingston DH, Loder P, Denny TN: Ranitidine improves lymphocyte function after severe head injury: Results of a randomized, double-blind study. Crit Care Med 1996, 24:1787-1792.
  • [53]Nielsen HJ, Hammer JH, Moesgaard F, Kehlet H: Ranitidine prevents postoperative transfusion-induced depression of delayed hypersensitivity. Surgery 1989, 105:711-717.
  • [54]Nielsen HJ, Pedersen BK, Moesgaard F, Haahr PM, Kehlet H: Effect of ranitidine on postoperative suppression of natural killer cell activity and delayed hypersensitivity. Acta Chir Scand 1989, 155:377-382.
  • [55]Nielsen HJ, Nielsen H, Jensen S, Moesgaard F: Ranitidine improves postoperative monocyte and neutrophil function. Arch Surg 1994, 129:309-315.
  • [56]Beaugerie L, Patey N, Brousse N: Ranitidine, diarrhoea, and lymphocytic colitis. Gut 1995, 37:708-711.
  • [57]Lichtenstein LM, Gillespie E: Inhibition of histamine release by histamine controlled by H2 receptor. Nature 1973, 244:287-288.
  • [58]Fischer HG, Reichmann G: Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 2001, 166:2717-2726.
  • [59]Hesske L, Vincenzetti C, Heikenwalder M, Prinz M, Reith W, Fontana A, Suter T: Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation. Brain 2010, 133:1637-1654.
  • [60]Pashenkov M, Huang YM, Kostulas V, Haglund M, Söderström M, Link H: Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 2001, 124:480-492.
  • [61]Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L: Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008, 172:146-155.
  • [62]Fransson ME, Liljenfeldt LS, Fagius J, Tötterman TH, Loskog AS: The T-cell pool is anergized in patients with multiple sclerosis in remission. Immunology 2009, 126:92-101.
  • [63]Weaver DJ Jr, Reis ES, Pandey MK, Köhl G, Harris N, Gerard C, Köhl J: C5a receptor-deficient dendritic cells promote induction of Treg and Th17 cells. Eur J Immunol 2010, 40:710-721.
  • [64]Huang YM, Xiao BG, Ozenci V, Kouwenhoven M, Teleshova N, Fredrikson S, Link H: Multiple sclerosis is associated with high levels of circulating dendritic cells secreting pro-inflammatory cytokines. J Neuroimmunol 1999, 99:82-90.
  • [65]Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD: Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421:744-748.
  • [66]Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998, 392:245-252.
  • [67]Vaknin-Dembinsky A, Balashov K, Weiner HL: IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 2006, 176:7768-7774.
  • [68]Durelli L, Conti L, Clerico M, Boselli D, Contessa G, Ripellino P, Ferrero B, Eid P, Novelli F: T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol 2009, 65:499-509.
  • [69]Matusevicius D, Kivisäkk P, He B, Kostulas N, Ozenci V, Fredrikson S, Link H: Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 1999, 5:101-104.
  • [70]Correale J, Gilmore W, McMillan M, Li S, McCarthy K, Le T, Weiner LP: Patterns of cytokine secretion by autoreactive proteolipid protein-specific T cell clones during the course of multiple sclerosis. J Immunol 1995, 154:2959-2968.
  • [71]Mazzoni A, Young HA, Spitzer JH, Visintin A, Segal DM: Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J Clin Invest 2001, 108:1865-1873.
  • [72]Simon T, Gogolák P, Kis-Tóth K, Jelinek I, László V, Rajnavölgyi E: Histamine modulates multiple functional activities of monocyte-derived dendritic cell subsets via histamine receptor 2. Int Immunol 2012, 24:107-116.
  • [73]Caron G, Delneste Y, Roelandts E, Duez C, Bonnefoy JY, Pestel J, Jeannin P: Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J Immunol 2001, 167:3682-3686.
  • [74]McIlroy A, Caron G, Blanchard S, Frémaux I, Duluc D, Delneste Y, Chevailler A, Jeannin P: Histamine and prostaglandin E up-regulate the production of Th2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-gamma-induced CXCL10 production by immature human dendritic cells. Immunology 2006, 117:507-516.
  • [75]Kubota T, Fujiwara H, Ueda Y, Itoh T, Yamashita T, Yoshimura T, Okugawa K, Yamamoto Y, Yano Y, Yamagishi H: Cimetidine modulates the antigen presenting capacity of dendritic cells from colorectal cancer patients. Br J Cancer 2002, 86:1257-1261.
  • [76]de Jong EC, Vieira PL, Kalinski P, Kapsenberg ML: Corticosteroids inhibit the production of inflammatory mediators in immature monocyte-derived DC and induce the development of tolerogenic DC3. J Leukoc Biol 1999, 66:201-204.
  • [77]Ramgolam VS, Markovic-Plese S: Interferon-beta inhibits Th17 cell differentiation in patients with multiple sclerosis. Endocr Metab Immune Disord Drug Targets 2010, 10:161-167.
  • [78]Barkhof F, Scheltens P, Frequin ST, Nauta JJ, Tas MW, Valk J, Hommes OR: Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs clinical findings in determining disease activity. AJR Am J Roentgenol 1992, 159:1041-1047.
  • [79]Claudio L, Raine CS, Brosnan CF: Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol 1995, 90:228-238.
  • [80]Calabrese M, Rocca MA, Atzori M, Mattisi I, Favaretto A, Perini P, Gallo P, Filippi M: A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis. Ann Neurol 2010, 67:376-383.
  • [81]Luparini RL, Rotundo A, Mattace R, Marigliano V: Possibly ranitidine-induced autoimmune hepatitis. Ann Ital Med Int 2000, 15:214-217.
  • [82]Davidson BL, Gilliam JN, Lipsky PE: Cimetidine-associated exacerbation of cutaneous lupus erythematosus. Arch Intern Med 1982, 142:166-167.
  • [83]Parshad R, Kapoor S, Gupta SD, Kumar A, Chattopadhyaya TK: Does famotidine enhance tumor infiltrating lymphocytes in breast cancer? Results of a randomized prospective pilot study. Acta Oncol 2002, 41:362-365.
  • [84]Andersen M: Exacerbation of psoriasis during treatment with H2 antagonists. Ugeskr Laeger 1991, 153:132.
  • [85]Shin JM, Sachs G: Pharmacology of proton pump inhibitors. Curr Gastroenterol Rep 2008, 10:528-534.
  • [86]Ohara T, Arakawa T: Lansoprazole decreases peripheral blood monocytes and intercellular adhesion molecule-1-positive mononuclear cells. Dig Dis Sci 1999, 44:1710-1715.
  • [87]Cheng FC, Ho YF, Hung LC, Chen CF, Tsai TH: Determination and pharmacokinetic profile of omeprazole in rat blood, brain and bile by microdialysis and high-performance liquid chromatography. J Chromatogr A 2002, 949:35-42.
  • [88]Kedika RR, Souza SF, Spechler SJ: Potential anti-inflammatory effects of proton pump inhibitor: a review and discussion of the clinical implications. Dig Dis Sci 2009, 54:2312-2317.
  • [89]LeVine SM, Chakrabarty A: The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann N Y Acad Sci 2004, 1012:252-266.
  • [90]Namazi MR, Jowkar F: A succinct review of the general and immunological pharmacologic effects of proton pump inhibitors. J Clin Pharm Ther 2008, 33:215-217.
  • [91]Määttä JA, Sjöholm UR, Nygårdas PT, Salmi AA, Hinkkanen AE: Neutrophils secreting tumor necrosis factor alpha infiltrate the central nervous system of BALB/c mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 1998, 90:162-175.
  • [92]Ziaber J, Paśnik J, Baj Z, Pokoca L, Chmielewski H, Tchórzewski H: The immunoregulatory abilities of polymorphonuclear neutrophils in the course of multiple sclerosis. Mediators Inflamm 1998, 7:335-338.
  • [93]Zehntner SP, Brickman C, Bourbonnière L, Remington L, Caruso M, Owens T: Neutrophils that infiltrate the central nervous system regulate T cell responses. J Immunol 2005, 174:5124-5131.
  • [94]Carlson T, Kroenke M, Rao P, Lane TE, Segal B: The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 2008, 205:811-823.
  • [95]Soulika AM, Lee E, McCauley E, Miers L, Bannerman P, Pleasure D: Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis. J Neurosci 2009, 29:14965-14979.
  • [96]Sayed BA, Christy AL, Walker ME, Brown MA: Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 2010, 184:6891-6900.
  • [97]Naegele M, Tillack K, Reinhardt S, Schippling S, Martin R, Sospedra M: Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol 2012, 242:60-71.
  • [98]Suzuki M, Mori M, Miura S, Suematsu M, Fukumura D, Kimura H, Ishii H: Omeprazole attenuates oxygen- derived free radical production from human neutrophils. Free Radic Biol Med 1996, 21:727-731.
  • [99]Yoshida N, Yoshikawa T, Tanaka Y, Fujita N, Kassai K, Naito Y, Kondo M: A new mechanism for anti-inflammatory actions of proton pump inhibitors--inhibitory effects on neutrophil-endothelial cell interactions. Aliment Pharmacol Ther 2000, 14(Suppl 1):74-81.
  • [100]Zedtwitz-Liebenstein K, Wenisch C, Patruta S, Parschalk B, Daxböck F, Graninger W: Omeprazole treatment diminishes intra- and extracellular neutrophil reactive oxygen production and bactericidal activity. Crit Care Med 2002, 30:1118-1122.
  • [101]Handa O, Yoshida N, Fujita N, Tanaka Y, Ueda M, Takagi T, Kokura S, Naito Y, Okanoue T, Yoshikawa T: Molecular mechanisms involved in anti-inflammatory effects of proton pump inhibitors. Inflamm Res 2006, 55:476-480.
  • [102]Tanigawa T, Watanabe T, Higuchi K, Machida H, Okazaki H, Yamagami H, Watanabe K, Tominaga K, Fujiwara Y, Oshitani N, Arakawa T: Lansoprazole, a proton pump inhibitor, suppresses production of tumor necrosis factor-alpha and interleukin-1beta induced by lipopolysaccharide and helicobacter pylori bacterial components in human monocytic cells via inhibition of activation of nuclear factor-kappaB and extracellular signal-regulated kinase. J Clin Biochem Nutr 2009, 45:86-92.
  • [103]Gandhi R, Laroni A, Weiner HL: Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 2010, 221:7-14.
  • [104]Howell OW, Rundle JL, Garg A, Komada M, Brophy PJ, Reynolds R: Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J Neuropathol Exp Neurol 2010, 69:1017-1033.
  • [105]Sugama S, Takenouchi T, Cho BP, Joh TH, Hashimoto M, Kitani H: Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. Inflamm Allergy Drug Targets 2009, 8:277-284.
  • [106]Klegeris A, Maguire J, McGeer PL: S- but not R-enantiomers of flurbiprofen and ibuprofen reduce human microglial and THP-1 cell neurotoxicity. J Neuroimmunol 2004, 152:73-77.
  • [107]Hashioka S, Klegeris A, McGeer PL: Proton pump inhibitors exert anti-inflammatory effects and decrease human microglial and monocytic THP-1 cell neurotoxicity. Exp Neurol 2009, 217:177-183.
  • [108]Karmeli Y, Stalnikowitz R, Eliakim R, Rahav G: Conventional dose of omeprazole alters gastric flora. Dig Dis Sci 1995, 40:2070-2073.
  • [109]Yeomans ND, Brimblecombe RW, Elder J, Heatley RV, Misiewicz JJ, Northfield TC, Pottage A: Effects of acid suppression on microbial flora of upper gut. Dig Dis Sci 1995, 40:81S-95S.
  • [110]Williams C, McColl KE: Review article: proton pump inhibitors and bacterial overgrowth. Aliment Pharmacol Ther 2006, 23:3-10.
  • [111]Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, Kasper LH: Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 2009, 183:6041-6050.
  • [112]Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN: Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010, 16:228-231.
  • [113]Untersmayr E, Schöll I, Swoboda I, Beil WJ, Förster-Waldl E, Walter F, Riemer A, Kraml G, Kinaciyan T, Spitzauer S, Boltz-Nitulescu G, Scheiner O, Jensen-Jarolim E: Antacid medication inhibits digestion of dietary proteins and causes food allergy: a fish allergy model in BALB/c mice. J Allergy Clin Immunol 2003, 112:616-623.
  • [114]Untersmayr E, Bakos N, Schöll I, Kundi M, Roth-Walter F, Szalai K, Riemer AB, Ankersmit HJ, Scheiner O, Boltz-Nitulescu G, Jensen-Jarolim E: Anti-ulcer drugs promote IgE formation toward dietary antigens in adult patients. FASEB J 2005, 19:656-658.
  • [115]Schöll I, Untersmayr E, Bakos N, Roth-Walter F, Gleiss A, Boltz-Nitulescu G, Scheiner O, Jensen-Jarolim E: Antiulcer drugs promote oral sensitization and hypersensitivity to hazelnut allergens in BALB/c mice and humans. Am J Clin Nutr 2005, 81:154-160.
  • [116]Schöll I, Ackermann U, Ozdemir C, Blümer N, Dicke T, Sel S, Sel S, Wegmann M, Szalai K, Knittelfelder R, Untersmayr E, Scheiner O, Garn H, Jensen-Jarolim E, Renz H: Anti-ulcer treatment during pregnancy induces food allergy in mouse mothers and a Th2-bias in their offspring. FASEB J 2007, 21:1264-1270.
  • [117]Brunner R, Wallmann J, Szalai K, Karagiannis P, Kopp T, Scheiner O, Jensen-Jarolim E, Pali-Schöll I: The impact of aluminium in acid suppressing drugs on the immune response of BALB/c mice. Clin Exp Allergy 2007, 37:1566-1573.
  • [118]Brunner R, Wallmann J, Szalai K, Karagiannis P, Altmeppen H, Riemer AB, Jensen-Jarolim E, Pali-Schöll I: Aluminium per se and in the anti-acid drug sucralfate promotes sensitization via the oral route. Allergy 2009, 64:890-897.
  • [119]Ruscin JM, Page RL, Valuck RJ: Vitamin B(12) deficiency associated with histamine(2)-receptor antagonists and a proton-pump inhibitor. Ann Pharmacother 2002, 36:812-816.
  • [120]Valuck RJ, Ruscin JM: A case-control study on adverse effects: H2 blocker or proton pump inhibitor use and risk of vitamin B12 deficiency in older adults. J Clin Epidemiol 2004, 57:422-428.
  • [121]Miller A, Korem M, Almog R, Galboiz Y: Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J Neurol Sci 2005, 233:93-97.
  • [122]Zhu Y, He ZY, Liu HN: Meta-analysis of the relationship between homocysteine, vitamin B12, folate, and multiple sclerosis. J Clin Neurosci 2011, 18:933-938.
  文献评价指标  
  下载次数:2次 浏览次数:8次