期刊论文详细信息
BMC Research Notes
Identification of suitable endogenous control genes for microRNA expression profiling of childhood medulloblastoma and human neural stem cells
Peter B Dallas3  Keith M Giles1  Kim W Carter2  Denise Anderson2  Laura A Genovesi3 
[1] Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Perth, Western Australia;Division of Bioinformatics and Biostatistics, Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western, Australia;Brain Tumour Research Program, Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western, Australia
关键词: Quantitative RT-PCR;    Gene expression profiling;    Neural stem cells;    Medulloblastoma;    MicroRNA;   
Others  :  1165667
DOI  :  10.1186/1756-0500-5-507
 received in 2012-05-31, accepted in 2012-09-12,  发布年份 2012
PDF
【 摘 要 】

Background

Medulloblastoma (MB) is the most common type of malignant childhood brain tumour. Although deregulated microRNA (miRNA) expression has been linked to MB pathogenesis, the selection of appropriate candidate endogenous control (EC) reference genes for MB miRNA expression profiling studies has not been systematically addressed. In this study we utilised reverse transcriptase quantitative PCR (RT-qPCR) to identify the most appropriate EC reference genes for the accurate normalisation of miRNA expression data in primary human MB specimens and neural stem cells.

Results

Expression profiling of 662 miRNAs and six small nuclear/ nucleolar RNAs in primary human MB specimens, two CD133+ neural stem cell (NSC) populations and two CD133- neural progenitor cell (NPC) populations was performed using TaqMan low-density array (TLDA) cards. Minimal intra-card variability for candidate EC reference gene replicates was observed, however significant inter-card variability was identified between replicates present on both TLDA cards A and B. A panel of 18 potentially suitable EC reference genes was identified for the normalisation of miRNA expression on TLDA cards. These candidates were not significantly differentially expressed between CD133+ NSCs/ CD133- NPCs and primary MB specimens. Of the six sn/snoRNA EC reference genes recommended by the manufacturer, only RNU44 was uniformly expressed between primary MB specimens and CD133+ NSC/CD133- NPC populations (P = 0.709; FC = 1.02). The suitability of candidate EC reference genes was assessed using geNorm and NormFinder software, with hsa-miR-301a and hsa-miR-339-5p found to be the most uniformly expressed EC reference genes on TLDA card A and hsa-miR-425* and RNU24 for TLDA card B.

Conclusions

A panel of 18 potential EC reference genes that were not significantly differentially expressed between CD133+ NSCs/ CD133- NPCs and primary human MB specimens was identified. The top ranked EC reference genes described here should be validated in a larger cohort of specimens to verify their utility as controls for the normalisation of RT-qPCR data generated in MB miRNA expression studies. Importantly, inter-card variability observed between replicates of certain candidate EC reference genes has major implications for the accurate normalisation of miRNA expression data obtained using the miRNA TLDA platform.

【 授权许可】

   
2012 Genovesi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416032712387.pdf 481KB PDF download
Figure 4. 36KB Image download
Figure 3. 70KB Image download
Figure 2. 42KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Giangaspero F, et al.: Medulloblastoma, in WHO Classification of Tumours of the Central Nervous System. Edited by Louis DN. International Agency for Research on Cancer (IARC), Lyon; 2007:132-140.
  • [2]Thompson MC, et al.: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 2006, 24(12):1924-31.
  • [3]Kool M, et al.: Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 2008, 3(8):e3088.
  • [4]Northcott PA, et al.: Medulloblastoma Comprises Four Distinct Molecular Variants. J Clin Oncol 2010, 29(10):1408-14.
  • [5]Cho YJ, et al.: Integrative Genomic Analysis of Medulloblastoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome. J Clin Oncol 2011, 29(11):1424-30.
  • [6]Kool M, et al.: Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012, 123(4):473-84.
  • [7]Hemmati HD, et al.: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003, 100(25):15178-83.
  • [8]Singh SK, et al.: Cancer stem cells in nervous system tumors. Oncogene 2004, 23(43):7267-73.
  • [9]Singh SK, et al.: Identification of human brain tumour initiating cells. Nature 2004, 432(7015):396-401.
  • [10]Sutter R, et al.: Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene 2010, 29(12):1845-56.
  • [11]Pei Y, et al.: An animal model of MYC-driven medulloblastoma. Cancer Cell 2012, 21(2):155-67.
  • [12]Lai EC: microRNAs: runts of the genome assert themselves. Curr Bio 2003, 13(23):925-936.
  • [13]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-97.
  • [14]Eulalio A, Huntzinger E, Izaurralde E: Getting to the root of miRNA-mediated gene silencing. Cell 2008, 132(1):9-14.
  • [15]Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008, 9(2):102-14.
  • [16]Chekulaeva M, Filipowicz W: Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009, 21(3):452-60.
  • [17]Cheng AM, et al.: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005, 33(4):1290-7.
  • [18]Xu P, Guo M, Hay BA: MicroRNAs and the regulation of cell death. Trends Genet 2004, 20(12):617-24.
  • [19]Chen CZ, et al.: MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303(5654):83-6.
  • [20]Cowland JB, Hother C, Gronbaek K: MicroRNAs and cancer. APMIS 2007, 115(10):1090-106.
  • [21]Garzon R, Calin GA, Croce CM: MicroRNAs in Cancer. Annu Rev Med 2009, 60:167-79.
  • [22]Nana-Sinkam SP, Croce CM: MicroRNAs as therapeutic targets in cancer. Transl Res 2011, 157(4):216-25.
  • [23]Dahlgaard J, et al.: Analytical variables influencing the performance of a miRNA based laboratory assay for prediction of relapse in stage I non-small cell lung cancer (NSCLC). BMC Res Notes 2011, 4:424. BioMed Central Full Text
  • [24]Gattolliat CH, et al.: Expression of miR-487b and miR-410 encoded by 14q32.31 locus is a prognostic marker in neuroblastoma. Br J Cancer 2011, 105(9):1352-1361.
  • [25]Wang ZX, et al.: Prognostic significance of serum miRNA-21 expression in human non-small cell lung cancer. J Surg Oncol 2011, 104(7):847-51.
  • [26]Yu G, et al.: Prognostic values of the miR-17-92 cluster and its paralogs in colon cancer. J Surg Oncol 2012, 106(3):232-7.
  • [27]Krichevsky AM, et al.: A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003, 9(10):1274-81.
  • [28]Nelson PT, et al.: Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 2004, 1(2):155-61.
  • [29]Thomson JM, et al.: A custom microarray platform for analysis of microRNA gene expression. Nat Methods 2004, 1(1):47-53.
  • [30]Chen C, et al.: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005, 33(20):e179.
  • [31]Hafner M, et al.: Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 2008, 44(1):3-12.
  • [32]Deo A, Carlsson J, Lindlof A: How to choose a normalization strategy for miRNA quantitative real-time (qPCR) arrays. J Bioinform Comput Biol 2011, 9(6):795-812.
  • [33]Peltier HJ, Latham GJ: Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008, 14(5):844-52.
  • [34]Thellin O, et al.: Housekeeping genes as internal standards: use and limits. J Biotechnol 1999, 75(2–3):291-5.
  • [35]Bustin SA: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000, 25(2):169-93.
  • [36]Vandesompele J, et al.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):RESEARCH0034. RESEARCH0034
  • [37]Haller F, et al.: Equivalence test in quantitative reverse transcription polymerase chain reaction: confirmation of reference genes suitable for normalization. Anal Biochem 2004, 335(1):RESEARCH0034-9.
  • [38]Davoren PA, et al.: Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol Biol 2008, 9:76. BioMed Central Full Text
  • [39]Ferretti E, et al.: Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 2008, 27(19):2616-27.
  • [40]Uziel T, et al.: The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 2009, 106(8):2812-7.
  • [41]Ferretti E, et al.: MicroRNA profiling in human medulloblastoma. Int J Cancer 2009, 124(3):568-77.
  • [42]Garzia L, et al.: MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One 2009, 4(3):e4998.
  • [43]Northcott PA, et al.: The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 2009, 69(8):3249-55.
  • [44]Gokhale A, et al.: Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. J Cancer Res Ther 2010, 6(4):521-9.
  • [45]Venkataraman S, et al.: MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One 2010, 5(6):e10748.
  • [46]Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64(15):5245-50.
  • [47]Genovesi LA, et al.: Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with neural stem cells. PLoS One 2011, 6(9):e23935.
  • [48]Schuller U, et al.: Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 2008, 14(2):123-34.
  • [49]Yang ZJ, et al.: Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 2008, 14(2):135-45.
  • [50]Grammel D, et al.: Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol 2012, 123(4):601-14.
  • [51]Gibson P, et al.: Subtypes of medulloblastoma have distinct developmental origins. Nature 2010, 468(7327):1095-9.
  • [52]Meyer SU, Pfaffl MW, Ulbrich SE: Normalization strategies for microRNA profiling experiments: a 'normal' way to a hidden layer of complexity? Biotechnol Lett 2010, 32(12):1777-88.
  • [53]Mestdagh P, et al.: A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 2009, 10(6):R64. BioMed Central Full Text
  • [54]Chang KH, et al.: MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer. BMC Cancer 2010, 10:173. BioMed Central Full Text
  • [55]Shen Y, et al.: Identification of miR-23a as a novel microRNA normalizer for relative quantification in human uterine cervical tissues. Exp Mol Med 2011, 43(6):358-66.
  • [56]Viprey VF, Corrias MV, Burchill SA: Identification of reference microRNAs and suitability of archived hemopoietic samples for robust microRNA expression profiling. Anal Biochem 2011, 421(2):566-72.
  • [57]Wotschofsky Z, et al.: Reference genes for the relative quantification of microRNAs in renal cell carcinomas and their metastases. Anal Biochem 2011, 417(2):233-41.
  • [58]Schaefer A, et al.: Suitable reference genes for relative quantification of miRNA expression in prostate cancer. Exp Mol Med 2010, 42(11):749-58.
  • [59]Chen L, et al.: The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol 2009, 50(2):358-69.
  • [60]Jensen SG, et al.: Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics 2011, 12:435. BioMed Central Full Text
  • [61]Wang B, et al.: Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array. PLoS One 2011, 6(2):e17167.
  • [62]Pera MF, et al.: Isolation, characterization, and differentiation of human embryonic stem cells. Methods Enzymol 2003, 365:429-46.
  • [63]Peh GS, et al.: CD133 expression by neural progenitors derived from human embryonic stem cells and its use for their prospective isolation. Stem Cells Dev 2009, 18(2):269-82.
  • [64]Bertram CM, et al.: Effective adenovirus-mediated gene transfer into neural stem cells derived from human embryonic stem cells. Stem Cells Dev 2010, 19(4):569-78.
  • [65]Ihaka R, Gentleman R: R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics 1996, 5(3):299-314.
  • [66]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25(4):402-8.
  文献评价指标  
  下载次数:0次 浏览次数:12次