BMC Cancer | |
Overexpression of Nrf2 attenuates Carmustine-induced cytotoxicity in U87MG human glioma cells | |
Sangeetha Sukumari-Ramesh1  Niyathi Prasad2  Cargill H Alleyne2  John R Vender2  Krishnan M Dhandapani2  | |
[1] 1120 15th Street, CA1010, Augusta 30912, GA, USA | |
[2] Department of Neurosurgery, Georgia Regents University, 1120 15th Street, CB2517, Augusta 30912, GA, USA | |
关键词: Chemotherapy; Glioma; BCNU; Carmustine; Nrf2; | |
Others : 1139095 DOI : 10.1186/s12885-015-1134-z |
|
received in 2014-10-06, accepted in 2015-02-24, 发布年份 2015 | |
【 摘 要 】
Background
Malignant glioma is one of the most devastating tumors in adults with poor patient prognosis. Notably, glioma often exhibits resistance to conventional chemotherapeutic approaches, complicating patient treatments. However, the molecular mediators involved in tumor chemoresistance remain poorly defined, creating a barrier to the successful management of glioma. In the present study, we hypothesized that the antioxidant transcription factor, Nrf2 (nuclear factor erythroid-derived 2 like 2), attenuates glioma cytotoxicity to Carmustine (BCNU), a widely used chemotherapeutic agent known to modulate cellular oxidative balance.
Methods
To test the hypothesis, we employed human malignant glioma cell line, U87MG and overexpression of Nrf2 in glioma cells was achieved using both pharmacological and genetic approaches.
Results
Notably, induction of Nrf2 was associated with increased expression of heme oxygenase-1 (HO-1), a stress inducible enzyme involved in anti-oxidant defense. In addition, over expression of Nrf2 in U87MG cells significantly attenuated the cytotoxicity of Carmustine as evidenced by both cellular viability assay and flow cytometry analysis. Consistent with this, antioxidants such as glutathione and N-acetyl cysteine significantly reduced Carmustine mediated glioma cytotoxicity.
Conclusions
Taken together, these data strongly implicate an unexplored role of Nrf2 in glioma resistance to Carmustine and raise the possible use of Nrf2 inhibitors as adjunct to Carmustine for the treatment of malignant glioma.
【 授权许可】
2015 Sukumari Ramesh et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150321023920540.pdf | 1888KB | download | |
Figure 5. | 30KB | Image | download |
Figure 4. | 61KB | Image | download |
Figure 3. | 66KB | Image | download |
Figure 2. | 26KB | Image | download |
Figure 1. | 56KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007, 114(2):97-109.
- [2]Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ: Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010, 60(3):166-93.
- [3]Bock HC, Puchner MJ, Lohmann F, Schutze M, Koll S, Ketter R, et al.: First-line treatment of malignant glioma with carmustine implants followed by concomitant radiochemotherapy: a multicenter experience. Neurosurg Rev 2010, 33(4):441-9.
- [4]Tamargo RJ, Myseros JS, Epstein JI, Yang MB, Chasin M, Brem H: Interstitial chemotherapy of the 9 L gliosarcoma: controlled release polymers for drug delivery in the brain. Cancer Res 1993, 53(2):329-33.
- [5]Ryan CW, Dolan ME, Brockstein BB, McLendon R, Delaney SM, Samuels BL, et al.: A phase II trial of O6-benzylguanine and carmustine in patients with advanced soft tissue sarcoma. Cancer Chemother Pharmacol 2006, 58(5):634-9.
- [6]Weiss RB, Issell BF: The nitrosoureas: carmustine (BCNU) and lomustine (CCNU). Cancer Treat Rev 1982, 9(4):313-30.
- [7]Woolley PV, Dion RL, Kohn KW, Bono VH: Binding of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea to L1210 cell nuclear proteins. Cancer Res 1976, 36(4):1470-4.
- [8]Kann HE Jr: Comparison of biochemical and biological effects of four nitrosoureas with differing carbamoylating activities. Cancer Res 1978, 38(8):2363-6.
- [9]Tew KD, Kyle G, Johnson A, Wang AL: Carbamoylation of glutathione reductase and changes in cellular and chromosome morphology in a rat cell line resistant to nitrogen mustards but collaterally sensitive to nitrosoureas. Cancer Res 1985, 45(5):2326-33.
- [10]Jochheim CM, Baillie TA: Selective and irreversible inhibition of glutathione reductase in vitro by carbamate thioester conjugates of methyl isocyanate. Biochem Pharmacol 1994, 47(7):1197-206.
- [11]Vanhoefer U, Yin MB, Harstrick A, Seeber S, Rustum YM: Carbamoylation of glutathione reductase by N, N-bis(2-chloroethyl)-N- nitrosourea associated with inhibition of multidrug resistance protein (MRP) function. Biochem Pharmacol 1997, 53(6):801-9.
- [12]Itoh K, Ishii T, Wakabayashi N, Yamamoto M: Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res 1999, 31(4):319-24.
- [13]Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M: Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci U S A 2004, 101(7):2046-51.
- [14]Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al.: Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004, 24(16):7130-9.
- [15]Pan H, Wang H, Zhu L, Mao L, Qiao L, Su X: The role of Nrf2 in migration and invasion of human glioma cell U251. World Neurosurg 2013, 80(3–4):363-70.
- [16]Zhou S, Ye W, Zhang M, Liang J: The effects of nrf2 on tumor angiogenesis: a review of the possible mechanisms of action. Crit Rev Eukaryot Gene Expr 2012, 22(2):149-60.
- [17]Ji X, Wang H, Zhu J, Zhu L, Pan H, Li W, et al.: Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Int J Cancer 2014, 135(3):574-84.
- [18]Zhu J, Wang H, Sun Q, Ji X, Zhu L, Cong Z, et al.: Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer 2013, 13:380. BioMed Central Full Text
- [19]Zhou Y, Wang HD, Zhu L, Cong ZX, Li N, Ji XJ, et al.: Knockdown of Nrf2 enhances autophagy induced by temozolomide in U251 human glioma cell line. Oncol Rep 2013, 29(1):394-400.
- [20]Cong ZX, Wang HD, Zhou Y, Wang JW, Pan H, Zhang DD, et al.: Temozolomide and irradiation combined treatment-induced Nrf2 activation increases chemoradiation sensitivity in human glioblastoma cells. J Neurooncol 2014, 116(1):41-8.
- [21]Sangeetha SR, Singh N, Vender JR, Dhandapani KM: Suberoylanilide hydroxamic acid (SAHA) induces growth arrest and apoptosis in pituitary adenoma cells. Endocrine 2009, 35(3):389-96.
- [22]Sukumari-Ramesh S, Singh N, Jensen MA, Dhandapani KM, Vender JR: Anacardic acid induces caspase-independent apoptosis and radiosensitizes pituitary adenoma cells. J Neurosurg 2011, 114(6):1681-90.
- [23]Galli A, Svegliati-Baroni G, Ceni E, Milani S, Ridolfi F, Salzano R, et al.: Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology 2005, 41(5):1074-84.
- [24]Domb AJ, Rock M, Perkin C, Yipchuck G, Broxup B, Villemure JG: Excretion of a radiolabelled anticancer biodegradable polymeric implant from the rabbit brain. Biomaterials 1995, 16(14):1069-72.
- [25]Xu GW, Mymryk JS, Cairncross JG: Inactivation of p53 sensitizes astrocytic glioma cells to BCNU and temozolomide, but not cisplatin. J Neurooncol 2005, 74(2):141-9.
- [26]Xu GW, Mymryk JS, Cairncross JG: Pharmaceutical-mediated inactivation of p53 sensitizes U87MG glioma cells to BCNU and temozolomide. Int J Cancer 2005, 116(2):187-92.
- [27]Xu GW, Nutt CL, Zlatescu MC, Keeney M, Chin-Yee I, Cairncross JG: Inactivation of p53 sensitizes U87MG glioma cells to 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 2001, 61(10):4155-9.
- [28]Rolhion C, Penault-Llorca F, Kemeny JL, Kwiatkowski F, Lemaire JJ, Chollet P, et al.: O(6)-methylguanine-DNA methyltransferase gene (MGMT) expression in human glioblastomas in relation to patient characteristics and p53 accumulation. Int J Cancer 1999, 84(4):416-20.
- [29]Dolan ME, Moschel RC, Pegg AE: Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci U S A 1990, 87(14):5368-72.
- [30]Dolan ME, Pegg AE: O6-benzylguanine and its role in chemotherapy. Clin Cancer Res 1997, 3(6):837-47.
- [31]Friedman HS, Kokkinakis DM, Pluda J, Friedman AH, Cokgor I, Haglund MM, et al.: Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J Clin Oncol 1998, 16(11):3570-5.
- [32]Belanich M, Randall T, Pastor MA, Kibitel JT, Alas LG, Dolan ME, et al.: Intracellular Localization and intercellular heterogeneity of the human DNA repair protein O(6)-methylguanine-DNA methyltransferase. Cancer Chemother Pharmacol 1996, 37(6):547-55.
- [33]Friedman HS, McLendon RE, Kerby T, Dugan M, Bigner SH, Henry AJ, et al.: DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J Clin Oncol 1998, 16(12):3851-7.
- [34]Li K, Zhong C, Wang B, He J, Bi J. Nrf2 expression participates in growth and differentiation of endometrial carcinoma cells in vitro and in vivo. J Mol Histol. 2013.
- [35]Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, et al.: Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 2008, 135(4):1358-68. 1368 e1351-1354
- [36]Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, et al.: RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 2008, 68(19):7975-84.
- [37]Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, et al.: Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther 2010, 9(2):336-46.
- [38]Kim SK, Yang JW, Kim MR, Roh SH, Kim HG, Lee KY, et al.: Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Radic Biol Med 2008, 45(4):537-46.
- [39]Kim TH, Hur EG, Kang SJ, Kim JA, Thapa D, Lee YM, et al.: NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Res 2011, 71(6):2260-75.
- [40]DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al.: Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011, 475(7354):106-9.
- [41]Konstantinopoulos PA, Spentzos D, Fountzilas E, Francoeur N, Sanisetty S, Grammatikos AP, et al.: Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res 2011, 71(15):5081-9.
- [42]Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, et al.: Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol Cancer 2011, 10:37. BioMed Central Full Text
- [43]Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, et al.: Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 2006, 3(10):e420.
- [44]Huang HC, Nguyen T, Pickett CB: Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci U S A 2000, 97(23):12475-80.
- [45]Kong AN, Owuor E, Yu R, Hebbar V, Chen C, Hu R, et al.: Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab Rev 2001, 33(3–4):255-71.
- [46]Muscarella LA, Barbano R, D’Angelo V, Copetti M, Coco M, Balsamo T, et al.: Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient’s outcome. Epigenetics 2011, 6(3):317-25.
- [47]Maines MD: Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 1988, 2(10):2557-68.
- [48]Schacter BA: Heme catabolism by heme oxygenase: physiology, regulation, and mechanism of action. Semin Hematol 1988, 25(4):349-69.
- [49]Doi K, Akaike T, Fujii S, Tanaka S, Ikebe N, Beppu T, et al.: Induction of haem oxygenase-1 nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 1999, 80(12):1945. -1954
- [50]Foresti R, Motterlini R: The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radic Res 1999, 31(6):459-75.
- [51]Fang J, Sawa T, Akaike T, Greish K, Maeda H: Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer 2004, 109(1):1-8.
- [52]Chan K, Han XD, Kan YW: An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci U S A 2001, 98(8):4611-6.
- [53]Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T, O’Connor T, et al.: High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 2001, 59(1):169-77.
- [54]Dilda PJ, Hogg PJ: Arsenical-based cancer drugs. Cancer Treat Rev 2007, 33(6):542-64.
- [55]Fang J, Nakamura H, Iyer AK: Tumor-targeted induction of oxystress for cancer therapy. J Drug Target 2007, 15(7–8):475-86.
- [56]Simizu S, Takada M, Umezawa K, Imoto M: Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem 1998, 273(41):26900-7.
- [57]Frischer H, Ahmad T: Severe generalized glutathione reductase deficiency after antitumor chemotherapy with BCNU” [1,3-bis(chloroethyl)-1-nitrosourea]. J Lab Clin Med 1977, 89(5):1080-91.
- [58]Frischer H: Erythrocytic glutathione reductase deficiency in a hospital population in the United States. Am J Hematol 1977, 2(4):327-34.
- [59]Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, et al.: Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 2002, 277(47):44765-71.