期刊论文详细信息
BMC Health Services Research
Health care costs in the elderly in Germany: an analysis applying Andersen’s behavioral model of health care utilization
Hans-Helmut König5  Hermann Brenner2  Thomas Lehnert5  Beate Wild1  Walter Emil Haefeli3  Renate Quinzler3  Kai-Uwe Saum2  Heiko Müller2  Herbert Matschinger4  Dirk Heider5 
[1] Department of General Internal Medicine and Psychosomatics, Medical University Hospital Heidelberg, Heidelberg, Germany;Divisions of Clinical Epidemiology and Aging Research and Preventive Oncology, German Cancer Research Center, Heidelberg, Germany;Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany;Department of Social Medicine, Occupational Medicine and Public Health, University of Leipzig, Leipzig, Germany;Department of Health Economics and Health Services Research, Hamburg Center for Health Economics, University Medical Center Hamburg-Eppendorf, Martinistr 52, Hamburg, 20246, Germany
关键词: Andersen behavioral model;    Elderly;    Multimorbidity;    Health care costs;    Health care utilization;    Cross-sectional study;    Cost of illness study;   
Others  :  1134108
DOI  :  10.1186/1472-6963-14-71
 received in 2013-08-13, accepted in 2014-02-12,  发布年份 2014
PDF
【 摘 要 】

Background

To analyze the association of health care costs with predisposing, enabling, and need factors, as defined by Andersen’s behavioral model of health care utilization, in the German elderly population.

Methods

Using a cross-sectional design, cost data of 3,124 participants aged 57–84 years in the 8-year-follow-up of the ESTHER cohort study were analyzed. Health care utilization in a 3-month period was assessed retrospectively through an interview conducted by trained study physicians at respondents’ homes. Unit costs were applied to calculate health care costs from the societal perspective. Socio-demographic and health-related variables were categorized as predisposing, enabling, or need factors as defined by the Andersen model. Multimorbidity was measured by the Cumulative Illness Rating Scale for Geriatrics (CIRS-G). Mental health status was measured by the SF-12 mental component summary (MCS) score. Sector-specific costs were analyzed by means of multiple Tobit regression models.

Results

Mean total costs per respondent were 889 € for the 3-month period. The CIRS-G score and the SF-12 MCS score representing the need factor in the Andersen model were consistently associated with total, inpatient, outpatient and nursing costs. Among the predisposing factors, age was positively associated with outpatient costs, nursing costs, and total costs, and the BMI was associated with outpatient costs.

Conclusions

Multimorbidity and mental health status, both reflecting the need factor in the Andersen model, were the dominant predictors of health care costs. Predisposing and enabling factors had comparatively little impact on health care costs, possibly due to the characteristics of the German social health insurance system. Overall, the variables used in the Andersen model explained only little of the total variance in health care costs.

【 授权许可】

   
2014 Heider et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150305074314643.pdf 270KB PDF download
【 参考文献 】
  • [1]Anderson GF, Hussey PS: Population aging: a comparison among industrialized countries. Health Aff (Millwood) 2000, 19:191-203.
  • [2]Bundesamt S: Bevökerung Deutschlands Bis 2060: 12. Koordinierte Bevölkerungsvorausberechnung. Wiesbaden: Statistisches Bundesamt; 2009.
  • [3]Fortin M, Soubhi H, Hudon C, Bayliss EA, van den Akker M: Multimorbidity’s many challenges. BMJ 2007, 334:1016-1017.
  • [4]Schoen C, Osborn R, Doty MM, Squires D, Peugh J, Applebaum S: A survey of primary care physicians in eleven countries, 2009: perspectives on care, costs, and experiences. Health Aff (Millwood) 2009, 28:w1171-1183.
  • [5]Stevenson J, Abernethy AP, Miller C, Currow DC: Managing comorbidities in patients at the end of life. BMJ 2004, 329:909-912.
  • [6]Ricketts TC, Goldsmith LJ: Access in health services research: the battle of the frameworks. Nurs Outlook 2005, 53:274-280.
  • [7]Andersen R, Newman JF: Societal and individual determinants of medical care utilization in the United States. Milbank Mem Fund Q Health Soc 1973, 51:95-124.
  • [8]Andersen RM: Revisiting the behavioral model and access to medical care: does it matter? J Health Soc Behav 1995, 36:1-10.
  • [9]Linden M, Horgas AL, Gilberg R, Steinhagen-Thiessen E: Predicting health care utilization in the very old. The role of physical health, mental health, attitudinal and social factors. J Aging Health 1997, 9:3-27.
  • [10]Derose KP, Bahney BW, Lurie N, Escarce JJ: Review: immigrants and health care access, quality, and cost. Med Care Res Rev 2009, 66:355-408.
  • [11]Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M: Defining comorbidity: implications for understanding health and health services. Ann Fam Med 2009, 7:357-363.
  • [12]Chronic Care: Making The Case For Ongoing Care http://www.rwjf.org/en/research-publications/find-rwjfresearch/2010/01/chronic-care.html webcite
  • [13]Hoffman C, Rice D, Sung HY: Persons with chronic conditions. Their prevalence and costs. JAMA 1996, 276:1473-1479.
  • [14]Van den Akker M, Buntinx F, Metsemakers JF, Roos S, Knottnerus JA: Multimorbidity in general practice: prevalence, incidence, and determinants of co-occurring chronic and recurrent diseases. J Clin Epidemiol 1998, 51:367-375.
  • [15]Wolff JL, Starfield B, Anderson G: Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Arch Intern Med 2002, 162:2269-2276.
  • [16]Yu W, Ravelo A, Wagner TH, Barnett PG: The relationships among age, chronic conditions, and healthcare costs. Am J Manag Care 2004, 10:909-916.
  • [17]Salvi F, Miller MD, Grilli A, Giorgi R, Towers AL, Morichi V, Spazzafumo L, Mancinelli L, Espinosa E, Rappelli A, Dessi-Fulgheri P: A manual of guidelines to score the modified cumulative illness rating scale and its validation in acute hospitalized elderly patients. J Am Geriatr Soc 2008, 56(1532–5415 (Electronic)):1926-1931.
  • [18]Schneider K, O’Donnell B, Dean D: Prevalence of multiple chronic conditions in the United States’ Medicare population. Health Qual Life Outcomes 2009, 7:82. BioMed Central Full Text
  • [19]Valderas JM, Starfield B, Roland M: Multimorbidity’s many challenges: a research priority in the UK. BMJ 2007, 334:1128.
  • [20]Lehnert T, Heider D, Leicht H, Heinrich S, Corrieri S, Luppa M, Riedel-Heller S, König H-H: Review: health care utilization and costs of elderly persons with multiple chronic conditions. Med Care Res Rev 2011, 68:387-420.
  • [21]Babitsch B, Gohl D, von Lengerke T: Re-revisiting Andersen’s behavioral model of health services Use: a systematic review of studies from 1998–2011. Psychosoc Med 2012, 9:1-15.
  • [22]Thode N, Bergmann DE, Kamtsiuris P, Kurth B-M: Einflussfaktoren auf die ambulante Inanspruchnahme in Deutschland. Bundesgesundheitsbl - Gesundheitsf - Gesundheitsschutz 2005, 48:296-306.
  • [23]Löw M, Stegmaier C, Ziegler H, Rothenbacher D, Brenner H: Epidemiological investigations of the chances of preventing, recognizing early and optimally treating chronic diseases in an elderly population (ESTHER study). Dtsch Med Wochenschr 2004, 129:2643-2647.
  • [24]Raum E, Rothenbacher D, Löw M, Stegmaier C, Ziegler H, Brenner H: Changes of cardiovascular risk factors and their implications in subsequent birth cohorts of older adults in Germany: a life course approach. Eur J Cardiovasc Prev Rehabil 2007, 14:809-814.
  • [25]De Boer AG, Wijker W, de Haes HC: Predictors of health care utilization in the chronically ill: a review of the literature. Health Policy 1997, 42:101-115.
  • [26]Organisation for Economic Cooperation and Development: What Are Equivalence Scales?. Paris: Organisation for Economic Cooperation and Development; 2008.
  • [27]Lubben J, Blozik E, Gillmann G, Iliffe S, von Renteln Kruse W, Beck JC, Stuck AE: Performance of an abbreviated version of the Lubben Social Network Scale among three European community-dwelling older adult populations. Gerontologist 2006, 46:503-513.
  • [28]Lubben JE: Assessing social networks among elderly populations. Family Community Health 1988, 11:42.
  • [29]Miller MD, Paradis CF, Houck PR, Mazumdar S, Stack JA, Rifai AH, Mulsant B, Reynolds CF III: Rating chronic medical illness burden in geropsychiatric practice and research: application of the cumulative illness rating scale. Psychiatry Res 1992, 41:237-248.
  • [30]Linn BS, Linn MW, Gurel L: Cumulative illness rating scale. J Am Geriatr Soc 1968, 16(0002–8614 (Print)):622-626.
  • [31]Ware J, Kosinski M, Keller SD: A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. MedCare 1996, 34(0025–7079 (Print)):220-233.
  • [32]Jenkinson C, Layte R, Jenkinson D, Lawrence K, Petersen S, Paice C, Stradling J: A shorter form health survey: can the SF-12 replicate results from the SF-36 in longitudinal studies? J Public Health Med 1997, 19:179-186.
  • [33]König H-H, Born A, Heider D, Matschinger H, Heinrich S, Riedel-Heller SG, Surall D, Angermeyer MC, Roick C: Cost-effectiveness of a primary care model for anxiety disorders. Br J Psychiatry 2009, 195:308-317.
  • [34]Roick C, Kilian R, Matschinger H, Bernert S, Mory C, Angermeyer MC: German adaptation of the client sociodemographic and service receipt inventory - an instrument for the cost of mental health care. Psychiatr Prax 2001, 28(Suppl 2):S84-90.
  • [35]Krankenhausgesellschaft D: Bestandsaufnahme Zur Krankenhausplanung Und Investitionsfinanzierung in Den Bundesländern. Berlin: Deutsche Krankenhausgesellschaft; 2009.
  • [36]Bundesamt S: Grunddaten Der Krankenhäuser 2008. Wiesbaden: Statistisches Bundesamt; 2009.
  • [37]Bundesamt S: Kostennachweis Der Krankenhäuser 2008. Statistisches Bundesamt: Wiesbaden; 2009.
  • [38]Krauth C, Hessel F, Hansmeier T, Wasem J, Seitz R, Schweikert B: Empirical standard costs for health economic evaluation in Germany – a proposal by the working group methods in health economic evaluation. Gesundheitswesen 2005, 67:736-746.
  • [39]der Ersatzkassen V: Vergütungslisten Für Logopädische⁄Sprachtherapeutische Leistungen. Berlin: Verband der Ersatzkassen (vdek); 2001.
  • [40]der Ersatzkassen V: Vergütungsliste Für Ergotherapeutische Leistungen. Berlin: Verband der Ersatzkassen (vdek); 2002.
  • [41]der Ersatzkassen V: Vergütungsliste Für Podologische Leistungen. Berlin: Verband der Ersatzkassen (vdek); 2007.
  • [42]Bundesverwaltungsam: Gebührenverzeichnis Für Heilpraktiker (GebüH) Und Beihilfefähige Höchstbeträge. Köln: Bundesverwaltungsam; 2011.
  • [43]GKV-Spitzenverband: Festbeträge. Berlin: GKV-Spitzenverband; 2007.
  • [44]Bundesvereinigung K: Abrechnungshilfe Für Festzuschüsse. Köln: Kassenzahnärztliche Bundesvereinigung; 2009.
  • [45]Medizinverlag Medizinische Medien Informations GmbH: MMI-Pharmindex 2009. Neu-Isenburg: Medizinverlag Medizinische Medien Informations GmbH; 2011.
  • [46]Bundesamt S: Pflegestatistik 2007. Wiesbaden: Statistisches Bundesamt; 2008.
  • [47]Bundesamt S: Verdienste Und Arbeitskosten. Wiesbaden: Statistisches Bundesamt; 2010.
  • [48]Bundesamt S: 2008: Verdienste in Deutschland Und Arbeitskosten Im EU-Vergleich – Press Release no.179. Wiesbaden: Statistisches Bundesamt; 2009.
  • [49]Van den Berg B, Brouwer WBF, Koopmanschap MA: Economic valuation of informal care. An overview of methods and applications. Eur J Health Econ 2004, 5:36-45.
  • [50]Bundesamt S: Verbraucherpreisindizes Für Deutschland. Statistisches Bundesamt: Wiesbaden; 2010.
  • [51]Royston P: Multiple imputation of missing values. Stata J 2004, 4:227-241.
  • [52]StataCorp: Stata Statistical Software: Release 12. College Station, TX: Stata Corp LP; 2011.
  • [53]Van Buuren S, Brand JPL, Groothuis-Oudshoorn CGM, Rubin DB: Fully conditional specification in multivariate imputation. J Stat Comput Simul 2006, 76:1049-1064.
  • [54]van Buuren S: Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res 2007, 16:219-242.
  • [55]Rubin DB: Inference and missing data. Biometrika 1976, 63:581-592.
  • [56]Wooldridge JM: Econometric Analysis of Cross Section and Panel Data. MIT Press; 2002.
  • [57]Royston P, Carlin JB, White IR: Multiple imputation of missing values: new features for mim. Stata J 2009, 9:252-264.
  • [58]Harel O: The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation. J Appl Stat 2009, 36:1109-1118.
  • [59]Condelius A, Edberg A-K, Jakobsson U, Hallberg IR: Hospital admissions among people 65+ related to multimorbidity, municipal and outpatient care. Arch Gerontol Geriatr 2008, 46:41-55.
  • [60]Rapoport J, Jacobs P, Bell NR, Klarenbach S: Refining the measurement of the economic burden of chronic diseases in Canada. Chronic Dis Can 2004, 25:13-21.
  • [61]Hessel A, Gunzelmann T, Geyer M, Brähler E: Utilization of medical services and medication intake of patients over 60 in Germany–health related, social structure related, socio-demographic and subjective factors. Z Gerontol Geriatr 2000, 33:289-299.
  • [62]Fahlman C, Lynn J, Doberman D, Gabel J, Finch M: Prescription drug spending for Medicare + Choice beneficiaries in the last year of life. JPalliatMed 2006, 9:884-893.
  • [63]Moxey ED, O’Connor JP, Novielli KD, Teutsch S, Nash DB: Prescription drug use in the elderly: a descriptive analysis. Health Care Financ Rev 2003, 24:127-141.
  • [64]Sambamoorthi U, Shea D, Crystal S: Total and out-of-pocket expenditures for prescription drugs among older persons. Gerontologist 2003, 43:345-359.
  • [65]Broyles RW, McAuley WJ, Baird-Holmes D: The medically vulnerable: their health risks, health status, and use of physician care. J Health Care Poor Underserved 1999, 10:186-200.
  • [66]Blackwell DL, Martinez ME, Gentleman JF, Sanmartin C, Berthelot J-M: Socioeconomic status and utilization of health care services in Canada and the United States: findings from a binational health survey. Med Care 2009, 47:1136-1146.
  • [67]Ani C, Bazargan M, Bazargan-Hejazi S, Andersen RM, Hindman DW, Baker RS: Correlates of self-diagnosis of chronic medical and mental health conditions in under-served African American and Latino populations. Ethn Dis 2008, 18(2 Suppl 2):S2-105–11.
  • [68]Insaf TZ, Jurkowski JM, Alomar L: Sociocultural factors influencing delay in seeking routine health care among Latinas: a community-based participatory research study. Ethn Dis 2010, 20:148-154.
  • [69]Landi F, Onder G, Cesari M, Barillaro C, Lattanzio F, Carbonin PU, Bernabei R, on behalf of the SILVERNET-HC Study Group: Comorbidity and social factors predicted hospitalization in frail elderly patients. J Clin Epidemiol 2004, 57:832-836.
  • [70]Andersen RM, Yu H, Wyn R, Davidson PL, Brown ER, Teleki S: Access to medical care for low-income persons: how do communities make a difference? Med Care Res Rev 2002, 59:384-411.
  • [71]Brown ER, Davidson PL, Yu H, Wyn R, Andersen RM, Becerra L, Razack N: Effects of community factors on access to ambulatory care for lower-income adults in large urban communities. Inquiry 2004, 41:39-56.
  • [72]Pescosolido BA, Wright ER, Alegría M, Vera M: Social networks and patterns of use among the poor with mental health problems in Puerto Rico. Med Care 1998, 36:1057-1072.
  • [73]Nagl A, Witte J, Hodek JM, Greiner W: Relationship between multimorbidity and direct healthcare costs in an advanced elderly population. Results of the PRISCUS trial. Z Gerontol Geriatr 2012, 45:146-154.
  • [74]Heinrich S, Luppa M, Matschinger H, Angermeyer MC, Riedel-Heller SG, Konig HH: Service utilization and health-care costs in the advanced elderly. Value Health 2008, 11:611-620. John Wiley & Sons, Inc. (doi:10.1111/j.1524-4733.2007.00285.x)
  • [75]Baser O, Palmer L, Stephenson J: The estimation power of alternative comorbidity indices. Value Health 2008, 11:946-955.
  • [76]Byles JE, D’Este C, Parkinson L, O’Connell R, Treloar C: Single index of multimorbidity did not predict multiple outcomes. J Clin Epidemiol 2005, 58:997-1005.
  • [77]Farley JF, Harley CR, Devine JW: A comparison of comorbidity measurements to predict healthcare expenditures. Am J Manag Care 2006, 12:110-119.
  • [78]Perkins AJ, Kroenke K, Unützer J, Katon W, Williams JW Jr, Hope C, Callahan CM: Common comorbidity scales were similar in their ability to predict health care costs and mortality. J Clin Epidemiol 2004, 57:1040-1048.
  • [79]Tooth L, Hockey R, Byles J, Dobson A: Weighted multimorbidity indexes predicted mortality, health service use, and health-related quality of life in older women. J Clin Epidemiol 2008, 61:151-159.
  文献评价指标  
  下载次数:14次 浏览次数:18次