期刊论文详细信息
BMC Research Notes
Optimizing cell arrays for accurate functional genomics
Pedro Roda-Navarro1  Hernán E Grecco2  Philippe I H Bastiaens2  Sven Fengler2 
[1] Immunology Research Institute Hospital 12 de Octubre (i+12), Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain;Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
关键词: Single cell analysis;    Reverse transfection;    Methods for systems biology;    Cell arrays;    Automated microscopy;   
Others  :  1166137
DOI  :  10.1186/1756-0500-5-358
 received in 2012-02-21, accepted in 2012-06-14,  发布年份 2012
PDF
【 摘 要 】

Background

Cellular responses emerge from a complex network of dynamic biochemical reactions. In order to investigate them is necessary to develop methods that allow perturbing a high number of gene products in a flexible and fast way. Cell arrays (CA) enable such experiments on microscope slides via reverse transfection of cellular colonies growing on spotted genetic material. In contrast to multi-well plates, CA are susceptible to contamination among neighboring spots hindering accurate quantification in cell-based screening projects. Here we have developed a quality control protocol for quantifying and minimizing contamination in CA.

Results

We imaged checkered CA that express two distinct fluorescent proteins and segmented images into single cells to quantify the transfection efficiency and interspot contamination. Compared with standard procedures, we measured a 3-fold reduction of contaminants when arrays containing HeLa cells were washed shortly after cell seeding. We proved that nucleic acid uptake during cell seeding rather than migration among neighboring spots was the major source of contamination. Arrays of MCF7 cells developed without the washing step showed 7-fold lower percentage of contaminant cells, demonstrating that contamination is dependent on specific cell properties.

Conclusions

Previously published methodological works have focused on achieving high transfection rate in densely packed CA. Here, we focused in an equally important parameter: The interspot contamination. The presented quality control is essential for estimating the rate of contamination, a major source of false positives and negatives in current microscopy based functional genomics screenings. We have demonstrated that a washing step after seeding enhances CA quality for HeLA but is not necessary for MCF7. The described method provides a way to find optimal seeding protocols for cell lines intended to be used for the first time in CA.

【 授权许可】

   
2012 Fengler et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416041133395.pdf 1561KB PDF download
Figure 3. 57KB Image download
Figure 2. 52KB Image download
Figure 1. 301KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Verveer PJ, Bastiaens PI: Quantitative microscopy and systems biology seeing the whole picture. Histochem Cell Biol 2008, 130(5):833-843.
  • [2]Ziauddin J, Sabatini DM: Microarrays of cells expressing defined cDNAs. Nature 2001, 411(6833):107-110.
  • [3]Kumar R, Conklin DS, Mittal V: High-throughput selection of effective RNAi probes for gene silencing. Genome Res 2003, 13(10):2333-2340.
  • [4]Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hautaniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dougherty ER, Suh E, Kallioniemi O: RNAi microarray analysis in cultured mammalian cells. Genome Res 2003, 13(10):2341-2347.
  • [5]Mannherz O, Mertens D, Hahn M, Lichter P: Functional screening for proapoptotic genes by reverse transfection cell array technology. Genomics 2006, 87(5):665-672.
  • [6]Palmer EL, Miller AD: Freeman TC: Identification and characterisation of human apoptosis inducing proteins using cell-based transfection microarrays and expression analysis. BMC Genomics 2006, 7:145. BioMed Central Full Text
  • [7]Conrad C, Erfle H, Warnat P, Daigle N, Lorch T, Ellenberg J, Pepperkok R, Eils R: Automatic identification of subcellular phenotypes on human cell arrays. Genome Res 2004, 14(6):1130-1136.
  • [8]Hu YH, Warnatz HJ, Vanhecke D, Wagner F, Fiebitz A, Thamm S, Kahlem P, Lehrach H, Yaspo ML, Janitz M: Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins. BMC Genomics 2006, 7:155. BioMed Central Full Text
  • [9]Palmer E, Freeman T: Investigation into the use of C- and N-terminal GFP fusion proteins for subcellular localization studies using reverse transfection microarrays. Comp Funct Genomics 2004, 5(4):342-353.
  • [10]Grecco HE, Roda-Navarro P, Girod A, Hou J, Frahm T, Truxius DC, Pepperkok R, Squire A, Bastiaens PI: In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays. Nat Methods 2010, 7(6):467-472.
  • [11]Erfle H, Simpson JC, Bastiaens PI, Pepperkok R: siRNA cell arrays for high-content screening microscopy.Biotechniques. 2004, 37(3):454-462.
  • [12]Simpson JC, Cetin C, Erfle H, Joggerst B, Liebel U, Ellenberg J, Pepperkok R: An RNAi screening platform to identify secretion machinery in mammalian cells. J Biotechnol 2007, 129(2):352-365.
  • [13]Pannier AK, Ariazi EA, Bellis AD, Bengali Z, Jordan VC, Shea LD: Bioluminescence imaging for assessment and normalization in transfected cell arrays. Biotechnol Bioeng 2007, 98(2):486-497.
  • [14]Redmond TM, Ren X, Kubish G, Atkins S, Low S, Uhler MD: Microarray transfection analysis of transcriptional regulation by cAMP-dependent protein kinase. Mol Cell Proteomics 2004, 3(8):770-779.
  • [15]Tian L, Wang P, Guo J, Wang X, Deng W, Zhang C, Fu D, Gao X, Shi T, Ma D: Screening for novel human genes associated with CRE pathway activation with cell microarray. Genomics 2007, 90:28-34.
  • [16]Webb B L, Diaz B, Martin G S, Lai F: A reporter system for reverse transfection cell arrays. J Biomol Screen 2003, 8(6):620-623.
  • [17]Yamauchi F, Okada M, Kato K, Jakt LM, Iwata H: Array-based functional screening for genes that regulate vascular endothelial differentiation of Flk1-positive progenitors derived from embryonic stem cells. Biochim Biophys Acta 2007, 1770(8):1085-1097.
  • [18]Baghdoyan S, Roupioz Y, Pitaval A, Castel D, Khomyakova E, Papine A, Soussaline F, Gidrol X: Quantitative analysis of highly parallel transfection in cell microarrays. Nucleic Acids Res 2004, 32(9):e77.
  • [19]Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, Ellenberg J, Pepperkok R: Reverse transfection on cell arrays for high content screening microscopy. Nat Protoc 2007, 2(2):392-399.
  • [20]Fjeldbo CS, Misund K, Gunther CC, Langaas M, Steigedal TS, Thommesen L, Laegreid A, Bruland T: Functional studies on transfected cell microarray analysed by linear regression modelling. Nucleic Acids Res 2008, 36(15):97.
  • [21]Yoshikawa T, Uchimura E, Kishi M, Funeriu DP, Miyake M, Miyake J: Transfection microarray of human mesenchymal stem cells and on-chip siRNA gene knockdown. J Control Release 2004, 96(2):227-232.
  • [22]Bailey SN, Ali SM, Carpenter AE, Higgins CO, Sabatini DM: Microarrays of lentiviruses for gene function screens in immortalized and primary cells. Nat Methods 2006, 3(2):117-122.
  • [23]Hodges E, Redelius JS, Wu W, Hoog C: Accelerated discovery of novel protein function in cultured human cells. Mol Cell Proteomics 2005, 4(9):1319-1327.
  • [24]Neumann B, Held M, Liebel U, Erfle H, Rogers P, Pepperkok R, Ellenberg J: High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 2006, 3(5):385-390.
  • [25]Silva JM, Mizuno H, Brady A, Lucito R, Hannon G J: RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proc Natl Acad Sci USA 2004, 101(17):6548-6552.
  • [26]Rantala JK, Makela R, Aaltola AR, Laasola P, Mpindi JP, Nees M, Saviranta P, Kallioniemi O: A cell spot microarray method for production of high density siRNA transfection microarrays. BMC Genomics 2011, 12:162. BioMed Central Full Text
  • [27]Griesbeck O, Baird G, Campbell R, Zacharias D, Tsien R: Reducing the environmental sensitivity of yellow fluorescent protein. J Biol Chem 2001, 276(31):29188.
  • [28]Grecco HE, Roda-Navarro P, Fengler S, Bastiaens PIH: High-Throughput Quantification of Posttranslational Modifications In Situ by CA-FLIM. Methods Enzymol 2011, 500:37-58. [ http://www.ncbi.nlm.nih.gov/pubmed/21943891http://www.ncbi.nlm.nih.gov/pubmed/21943891 webcite]
  • [29]Kamentsky L, Jones T, Fraser A, Bray M, Logan D, Madden K, Ljosa V, Rueden C, Eliceiri K, Carpenter A: Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 2011, 27(8):1179.
  • [30]Efron B: Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika 1981, 68(3):589-599.
  文献评价指标  
  下载次数:23次 浏览次数:13次