期刊论文详细信息
BMC Medical Genetics
The TCF7L2 rs7903146 (T) allele is associated with type 2 diabetes in urban Ghana: a hospital-based case–control study
Frank P Mockenhaupt3  Matthias B Schulze1  George Bedu-Addo2  Laura K Frank1  Till Othmer3  Ina Danquah1 
[1]Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
[2]Komfo Anokye Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, P.O. Box 1934, Kumasi, Ghana
[3]Institute of Tropical Medicine and International Health, Charité, Universitätsmedizin Berlin, Spandauer Damm 130, 14050 Berlin, Germany
关键词: CAPN10;    PPARγ;    KCNJ11;    TCF7L2;    Type 2 diabetes;    Ghana;   
Others  :  1122630
DOI  :  10.1186/1471-2350-14-96
 received in 2013-05-06, accepted in 2013-09-10,  发布年份 2013
PDF
【 摘 要 】

Background

Type 2 diabetes mellitus is increasing dramatically in sub-Saharan Africa, and genetic predisposition is likely involved in that. Yet, genetic variants known to confer increased susceptibility among Caucasians are far from being established in African populations. In Ghanaian adults, we examined associations of several of these polymorphisms with type 2 diabetes.

Methods

A hospital-based case–control study on type 2 diabetes (and hypertension) was conducted in Kumasi, Ghana. TCF7L2 rs7903146, KCNJ11 rs5219, PPARγ rs1801282 and CAPN10 rs3842570, rs3792267, and rs5030952 were typed and associations with type 2 diabetes and phenotypic traits examined.

Results

675 patients with type 2 diabetes and 377 controls were compared. The minor allele frequency of the TCF7L2 (T) allele was 0.33. In the multivariate model, this allele increased the risk of type 2 diabetes by 39% (95% confidence interval (CI), 1.07-1.81; p = 0.014). The minor alleles KCNJ11 (G) and PPARγ (G) were practically absent (each, 0.001). Minor allele frequencies of CAPN10 were for -43 (A) 0.11 and for -63 (C) 0.46. These variants showed no significant associations with type 2 diabetes. Two CAPN10 haplotypes tended to protect against type 2 diabetes: 211 (aOR, 0.32; 95% CI, 0.03-1.92; p = 0.31) and 221 (aOR, 0.73; 95% CI, 0.48-1.10; p = 0.13).

Conclusions

In urban Ghana, the frequency of the TCF7L2 rs7903146 (T) allele is comparable to the one in Caucasians; the association with type 2 diabetes is slightly weaker. The risk allele KCNJ11 (G) and the protective allele PPARγ (G) are virtually absent. The potential influence of comparatively rare CAPN10 haplotypes on type 2 diabetes risk in this population requires further evaluation. Large-scale genetic studies among native Africans aiming at fine-mapping the candidate genes are needed to identify the actual factors involved in their increased susceptibility to type 2 diabetes.

【 授权许可】

   
2013 Danquah et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150214024059380.pdf 220KB PDF download
【 参考文献 】
  • [1]Mathers CD, Boerma T, Ma Fat D: Global and regional causes of death. Br Med Bull 2009, 92:7-32.
  • [2]International Diabetes Federation: Diabetes Atlas. 5th edition. Brussels: International Diabetes Federation; 2011.
  • [3]Karter AJ, Ferrara A, Liu JY, Moffet HH, Ackerson LM, Selby JV: Ethnic disparities in diabetic complications in an insured population. Jama 2002, 287(19):2519-2527.
  • [4]Staiger H, Machicao F, Fritsche A, Haring HU: Pathomechanisms of type 2 diabetes genes. Endocr Rev 2009, 30(6):557-585.
  • [5]Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, et al.: Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010, 42(7):579-589.
  • [6]Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, et al.: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010, 42(2):105-116.
  • [7]Weedon MN, McCarthy MI, Hitman G, Walker M, Groves CJ, Zeggini E, Rayner NW, Shields B, Owen KR, Hattersley AT, et al.: Combining information from common type 2 diabetes risk polymorphisms improves disease prediction. PLoS Med 2006, 3(10):e374.
  • [8]Saxena R, Elbers CC, Guo Y, Peter I, Gaunt TR, Mega JL, Lanktree MB, Tare A, Castillo BA, Li YR, et al.: Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet 2012, 90(3):410-425.
  • [9]Helgason A, Palsson S, Thorleifsson G, Grant SF, Emilsson V, Gunnarsdottir S, Adeyemo A, Chen Y, Chen G, Reynisdottir I, et al.: Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 2007, 39(2):218-225.
  • [10]Gouda HN, Sagoo GS, Harding AH, Yates J, Sandhu MS, Higgins JP: The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol 2010, 171(6):645-655.
  • [11]Pirie FJ, Motala AA, Pegoraro RJ, Paruk IM, Govender T, Rom L: Variants in PPARG, KCNJ11, TCF7L2, FTO, and HHEX genes in South African subjects of Zulu descent with type 2 diabetes. Afr J Diab Med 2010, 18(1):12-16.
  • [12]Sale MM, Smith SG, Mychaleckyj JC, Keene KL, Langefeld CD, Leak TS, Hicks PJ, Bowden DW, Rich SS, Freedman BI: Variants of the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in an African-American population enriched for nephropathy. Diabetes 2007, 56(10):2638-2642.
  • [13]Chen Y, Kittles R, Zhou J, Chen G, Adeyemo A, Panguluri RK, Chen W, Amoah A, Opoku V, Acheampong J, et al.: Calpain-10 gene polymorphisms and type 2 diabetes in West Africans: the Africa America Diabetes Mellitus (AADM) Study. Ann Epidemiol 2005, 15(2):153-159.
  • [14]Schafer SA, Machicao F, Fritsche A, Haring HU, Kantartzis K: New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms. Diabetes Res Clin Pract 2011, 93(Suppl 1):S9-S24.
  • [15]Stumvoll M, Fritsche A, Madaus A, Stefan N, Weisser M, Machicao F, Haring H: Functional significance of the UCSNP-43 polymorphism in the CAPN10 gene for proinsulin processing and insulin secretion in nondiabetic Germans. Diabetes 2001, 50(9):2161-2163.
  • [16]Danquah I, Bedu-Addo G, Terpe K, Micah F, Amoako YA, Awuku YA, Dietz E, van der Giet M, Spranger J, Mockenhaupt FP: Diabetes mellitus type 2 in urban Ghana: characteristics and associated factors. BMC Public Health 2012, 12:210. BioMed Central Full Text
  • [17]Agyemang C: Rural and urban differences in blood pressure and hypertension in Ghana, West Africa. Public Health 2006, 120(6):525-533.
  • [18]Amoah AG, Owusu SK, Adjei S: Diabetes in Ghana: a community based prevalence study in Greater Accra. Diabetes Res Clin Pract 2002, 56(3):197-205.
  • [19]Amoah AG: Sociodemographic variations in obesity among Ghanaian adults. Public Health Nutr 2003, 6(8):751-757.
  • [20]Stabilization of DNA in whole blood by Buffer AS. http://www.qiagen.com/Products/Catalog/Sample-Technologies/DNA-Sample-Technologies/Genomic-DNA/QIAamp-DNA-Mini-Kit#resources webcite
  • [21]Evans JC, Frayling TM, Cassell PG, Saker PJ, Hitman GA, Walker M, Levy JC, O’Rahilly S, Rao PV, Bennett AJ, et al.: Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. Am J Hum Genet 2001, 69(3):544-552.
  • [22]Gauderman WJ, Morrison JM: Quanto. A computer program for power and sample size calculations for genetic-epidemiology studies. 2006. http://hydra.usc.edu/gxe webcite
  • [23]Stephens M, Donnelly P: A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003, 73(5):1162-1169.
  • [24]Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001, 68(4):978-989.
  • [25]Fendt L, Rock A, Zimmermann B, Bodner M, Thye T, Tschentscher F, Owusu-Dabo E, Gobel TM, Schneider PM, Parson W: MtDNA diversity of Ghana: a forensic and phylogeographic view. Forensic Sci Int Genet 2012, 6(2):244-249.
  • [26]Weinstein JL, Phillips V, MacLeod E, Arsenault M, Ferris AM: A universal product code scanner is a feasible method of measuring household food inventory and food use patterns in low-income families. J Am Diet Assoc 2006, 106(3):443-445.
  • [27]Hinzmann R, Schlaeger C, Tran CT: What do we need beyond hemoglobin A1c to get the complete picture of glycemia in people with diabetes? Int J Med Sci 2012, 9(8):665-681.
  • [28]Guinan KJ: Worldwide distribution of type II diabetes-associated TCF7L2 SNPs: evidence for stratification in Europe. Biochem Genet 2012, 50(3–4):159-179.
  • [29]Ruiz-Narvaez E: Is the Ala12 variant of the PPARG gene an “unthrifty allele”? J Med Genet 2005, 42(7):547-550.
  • [30]Scacchi R, Pinto A, Rickards O, Pacella A, De Stefano GF, Cannella C, Corbo RM: An analysis of peroxisome proliferator-activated receptor gamma (PPAR-gamma 2) Pro12Ala polymorphism distribution and prevalence of type 2 diabetes mellitus (T2DM) in world populations in relation to dietary habits. Nutr Metab Cardiovasc Dis 2007, 17(9):632-641.
  • [31]Gong B, Yu J, Li H, Li W, Tong X: The effect of KCNJ11 polymorphism on the risk of type 2 diabetes: a global meta-analysis based on 49 case–control studies. DNA Cell Biol 2012, 31(5):801-810.
  • [32]Alekseev AE, Reyes S, Yamada S, Hodgson-Zingman DM, Sattiraju S, Zhu Z, Sierra A, Gerbin M, Coetzee WA, Goldhamer DJ, et al.: Sarcolemmal ATP-sensitive K(+) channels control energy expenditure determining body weight. Cell Metab 2010, 11(1):58-69.
  • [33]Aziz Q, Thomas AM, Khambra T, Tinker A: Regulation of the ATP-sensitive potassium channel subunit, Kir6.2, by a Ca2+-dependent protein kinase C. J Biol Chem 2012, 287(9):6196-6207.
  • [34]Yan FF, Pratt EB, Chen PC, Wang F, Skach WR, David LL, Shyng SL: Role of Hsp90 in biogenesis of the beta-cell ATP-sensitive potassium channel complex. Mol Biol Cell 2010, 21(12):1945-1954.
  • [35]Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, et al.: Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000, 26(2):163-175.
  • [36]Tsuchiya T, Schwarz PE, Bosque-Plata LD, Geoffrey Hayes M, Dina C, Froguel P, Wayne Towers G, Fischer S, Temelkova-Kurktschiev T, Rietzsch H, et al.: Association of the calpain-10 gene with type 2 diabetes in Europeans: results of pooled and meta-analyses. Mol Genet Metab 2006, 89(1–2):174-184.
  • [37]Garant MJ, Kao WH, Brancati F, Coresh J, Rami TM, Hanis CL, Boerwinkle E, Shuldiner AR: SNP43 Of CAPN10 and the risk of type 2 diabetes in African-Americans: the atherosclerosis risk in communities study. Diabetes 2002, 51(1):231-237.
  • [38]Adak S, Sengupta S, Chowdhury S, Bhattacharyya M: Co-existence of risk and protective haplotypes of Calpain 10 gene to type 2 diabetes in the eastern Indian population. Diab Vasc Dis Res 2010, 7(1):63-68.
  文献评价指标  
  下载次数:3次 浏览次数:6次