期刊论文详细信息
BMC Developmental Biology
External and internal shell formation in the ramshorn snail Marisa cornuarietis are extremes in a continuum of gradual variation in development
Heinz-R Köhler1  Rita Triebskorn2  Silke Schuster1  Julian Staniek1  Leonie Marschner1 
[1] Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, D-72072 Tübingen, Germany;Transfer Center for Ecotoxicology and Ecophysiology, D-72108 Rottenburg, Germany
关键词: Mantle Formation;    Embryogenesis;    Shell Internalization;    Platinum;   
Others  :  1085760
DOI  :  10.1186/1471-213X-13-22
 received in 2013-01-30, accepted in 2013-05-09,  发布年份 2013
PDF
【 摘 要 】

Background

Toxic substances like heavy metals can inhibit and disrupt the normal embryonic development of organisms. Exposure to platinum during embryogenesis has been shown to lead to a “one fell swoop” internalization of the shell in the ramshorn snail Marisa cornuarietis, an event which has been discussed to be possibly indicative of processes in evolution which may result in dramatic changes in body plans.

Results

Whereas at usual cultivation temperature, 26°C, platinum inhibits the growth of both shell gland and mantle edge during embryogenesis leading to an internalization of the mantle and, thus, also of the shell, higher temperatures induce a re-start of the differential growth of the mantle edge and the shell gland after a period of inactivity. Here, developing embryos exhibit a broad spectrum of shell forms: in some individuals only the ventral part of the visceral sac is covered while others develop almost “normal” shells. Histological studies and scanning electron microscopy images revealed platinum to inhibit the differential growth of the shell gland and the mantle edge, and elevated temperature (28 - 30°C) to mitigate this platinum effect with varying efficiency.

Conclusion

We could show that the formation of internal, external, and intermediate shells is realized within the continuum of a developmental gradient defined by the degree of differential growth of the embryonic mantle edge and shell gland. The artificially induced internal and intermediate shells are first external and then partly internalized, similar to internal shells found in other molluscan groups.

【 授权许可】

   
2013 Marschner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113180249967.pdf 5901KB PDF download
Figure 8. 28KB Image download
Figure 7. 70KB Image download
Figure 6. 136KB Image download
Figure 5. 38KB Image download
Figure 4. 121KB Image download
Figure 3. 67KB Image download
Figure 2. 147KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]West-Eberhard MJ: Developmental Plasticity and Evolution. Oxford: University Press; 2003.
  • [2]Osterauer R, Marschner L, Betz O, Gerberding M, Sawasdee B, Cloetens P, Haus N, Sures B, Triebskorn R, Köhler HR: Turning snails into slugs: induced body plan changes and formation of an internal shell. Evol Dev 2010, 12(5):474-483.
  • [3]Marschner L, Triebskorn R, Köhler HR: Arresting mantle formation and redirecting embryonic shell gland tissue by platinum2+ leads to body plan modifications in Marisa cornuarietis, (Gastropoda, Ampullariidae). J Morphol 2012, 273(8):830-841.
  • [4]Crofts DR: The development of Haliotis tuberculata with special reference to organogenesis during torsion. Philos Trans R Soc London. Ser B, Biol Sci 1937, 228(552):219-268. [http://www.jstor.org/stable/92284 webcite] [ArticleType: research-article / Full publication date: Oct. 15, 1937 / Copyright Ⓒ1937 The Royal Society]
  • [5]Page LR: Modern insights on gastropod development: Reevaluation of the evolution of a novel body plan. Integr Comp Biol 2006, 46(2):134-143. [http://icb.oxfordjournals.org/content/46/2/134.abstract webcite]
  • [6]Aktipis SW, Giribet G, Lindberg DR, Ponder WF: Gastropoda. In Phylogeny and Evolution of the Mollusca. Edited by Lindberg DR., Ponder WF, Lindberg DR.. Berkeley: University of California Press; 2008.
  • [7]Demian ES, Yousif F: Embryonic development and organogenesis in the snail Marisa cornuarietis (Mesogastropoda: Ampullariidae). I General outlines of development. Malacologia 1973, 12:123-150. [PMID: 4736967]
  • [8]Garstang W: The origin and evolution of larval forms. Nature 1928, 122:366.
  • [9]Page LR: Gastropod ontogenetic torsion: developmental remnants of an ancient evolutionary change in body plan. J Exp Zoo 2003, 297B:11-26.
  • [10]Osterauer R, Haus N, Sures B, Köhler HR: Uptake of platinum byzebrafish (Danio rerio) and ramshorn snail Marisa cornuarietis and resulting effects on early embryogenesis. Chemosphere 1979, 77(7):975-982. [http://www.ncbi.nlm.nih.gov/pubmed/19796790 webcite] [PMID: 6790]
  • [11]Sawasdee B, Köhler HR: Embryo toxicity of pesticides and heavy metals to the ramshorn snail, Marisa cornuarietis (Prosobranchia). Chemosphere 1927, 75(11):1539-1547. [http://www.ncbi.nlm.nih.gov/pubmed/19278713 webcite][PMID: 8713]
  • [12]Sawasdee B, Köhler HR: Metal sensitivity of the embryonic development of the ramshorn snail Marisa cornuarietis (Prosobranchia). Ecotoxicology 2010. [http://www.ncbi.nlm.nih.gov/pubmed/20711673 webcite][PMID: 20711673]
  • [13]Osterauer R, Köhler HR, Triebskorn R: Histopathological alterations and induction of Hsp70 in ramshorn snail Marisa cornuarietis and zebrafish embryos after exposure to PtCl2 Danio rerio. Aquat Toxicol 2010, 99:100-107. [http://www.ncbi.nlm.nih.gov/pubmed/20444508 webcite][PMID: 20444508]
  • [14]Demian ES, Yousif F: Embryonic development and organogenesis in the snail Marisa cornuarietis (Mesogastropoda: Ampullariidae). II. Development of the alimentary system. Malacologia 1973, 12:151-174. [PMID: 4718483]
  • [15]Demian ES, Yousif F: Embryonic development and organogenesis in the snail Marisa cornuarietis (Mesogastropoda: Ampullariidae). 3 Development of the circulatory and renal systems. Malacologia 1973, 12(2):175-194. [PMID: 4788265]
  • [16]Demian ES, Yousif F: Embryonic development and organogenesis in the snail Marisa cornuarietis (Mesogastropoda: Ampullariidae). IV. Development of the shell gland, mantle and respiratory organs. Malacologia 1973, 12(2):195-211. [PMID: 4788266]
  • [17]Demian ES, Yousif F: Embryonic development and organogenesis in the snail Marisa cornuarietis (Mesogastropoda: Ampullariidae). V Development of the nervous system. Malacologia 1975, 15:29-42. [PMID: 1221226]
  • [18]Cather JN: Cellular interactions in the development of the shell gland of the gastropod, Ilyanassa. J Exp Zool 1967, 166(2):205-223.
  • [19]McCain ER: Cell interactions influence the pattern of biomineralization in the Ilyanassa obsoleta (Mollusca) embryo. Dev Dyn 1992, 195(3):188-200. [PMID: 1301083]
  • [20]Dictus WJ, Damen P: Cell-lineage and clonal-contribution map of the trochophore larva of Patella vulgata (Mollusca). Mech Dev 1997, 62(2):213-226. [PMID: 9152012]
  • [21]Ponder WF, Lindberg DR: Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zool J Linn Soc 1997, 119(2):83-265.
  • [22]Haszprunar G: On the origin and evolution of major gastropod groups, with special reference to the streptoneura. J Mollus Stud 1988, 54(4):367-441.
  • [23]Wolpert L: Principles of Development. New York: Oxford: Oxford University Press; 2011.
  • [24]Grande C, Patel NH: Nodal signalling is involved in left–right asymmetry in snails. Nature 2008, 457(7232):1007-1011. [http://www.nature.com/doifinder/10.1038/nature07603 webcite]
  • [25]Jackson DJ, WÃűrheide G, Degnan BM: Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol Biol 2007, 7:160. [http://www.biomedcentral.com/1471-2148/7/160 webcite] BioMed Central Full Text
  • [26]Nederbragt AJ, van Loon AE, Dictus WJ: Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 2002, 246(2):341-355. [http://linkinghub.elsevier.com/retrieve/pii/S0012160602906536 webcite]
  • [27]Arendt D, Nübler-Jung K: Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech Dev 1997, 61(1-2):7-21. [http://www.sciencedirect.com/science/article/pii/S092547739600620X webcite]
  • [28]Baratte S, Andouche A, Bonnaud L: Engrailed in cephalopods: a key gene related to the emergence of morphological novelties. Dev Genes Evol 2007, 217(5):353-362. [http://www.springerlink.com/index/10.1007/s00427-007-0147-2 webcite]
  • [29]Gilbert SF, Singer SR: Developmental Biology. Sunderland: Palgrave Macmillan; 2006.
  • [30]Hanna LA, Peters JM, Wiley LM, Clegg MS, Keen CL: Comparative effects of essential and nonessential metals on preimplantation mouse embryo development in vitro. Toxicology 1997, 116(1-3):123-131. [PMID: 9020513]
  • [31]Snow ET: Metal carcinogenesis: mechanistic implications. Pharmacol Ther 1992, 53:31-65. [http://www.ncbi.nlm.nih.gov/pubmed/1641401 webcite] [PMID: 1641401]
  • [32]Gebel T, Lantzsch H, Pleßow K, Dunkelberg H: Genotoxicity of platinum and palladium compounds in human and bacterial cells. Mutat Res/Genet Toxicol Environ Mutagen 1997, 389(2–3):183-190. [http://www.sciencedirect.com/science/article/pii/S1383571896001453 webcite]
  • [33]Migliore L, Frenzilli G, Nesti C, Fortaner S, Sabbioni E: Cytogenetic and oxidative damage induced in human lymphocytes by platinum, rhodium and palladium compounds. Mutagenesis 2002, 17(5):411-417. [PMID: 12202629]
  • [34]Nordlind K: Further studies on the ability of different metal salts to influence the DNA synthesis of human lymphoid cells. Int Arch Allergy Immunol 2009, 79(1):83-85.
  • [35]Osterauer R, Faßbender C, Braunbeck T, Köhler HR: Genotoxicity of platinum in embryos of zebrafish Danio rerio and ramshorn snail Marisa cornuarietis. Sci Total Environ 2011, 409(11):2114-2119. [http://linkinghub.elsevier.com/retrieve/pii/S0048969711001203 webcite]
  • [36]Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK: Heat shock proteins in toxicology: How close and how far? Life Sci 2010, 86(11-12):377-384. [http://www.sciencedirect.com/science/article/pii/S0024320510000044 webcite]
  • [37]Rutherford SL, Lindquist S: Hsp90 as a capacitor for morphological evolution. Nature 1998, 396(6709):336-342. [PMID: 9845070]
  • [38]Queitsch C, Sangster TA, Lindquist S: Hsp90 as a capacitor of phenotypic variation. Nature 2002, 417(6889):618-624. [PMID: 12050657]
  • [39]Gunter HM, Degnan BM: Impact of ecologically relevant heat shocks on Hsp developmental function in the vetigastropod, Haliotis asinina. J Exp Zool B Mol Dev Evol 2008, 310(5):450-464. [http://www.ncbi.nlm.nih.gov/pubmed/18421770 webcite] [PMID: 18421770]
  • [40]Isaenko OA, Karr TL, Feder ME: Hsp70 and thermal pretreatment mitigate developmental damage caused by mitotic poisons in Drosophila. Cell Stress Chaperones 2002, 7(3):297-308. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514829/ webcite] [PMID: 12482205 PMCID: PMC514829]
  • [41]Helmbrecht K, Zeise E, Rensing L: Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2000, 33(6):341-365. [PMID: 11101008]
  • [42]Hunter ES, Dix DJ: Heat shock proteins Hsp70-1 and Hsp70-3 are necessary and sufficient to prevent arsenite-induced dysmorphology in mouse embryos. Mol Reprod Dev 2001, 59(3):285-293.
  • [43]Barnes J, Collins B, Dix D, Allen J: Effects of heat shock protein 70 (Hsp70) on arsenite-induced genotoxicity. Environ Mol Mutagen 2002, 40(4):236-242.
  • [44]Serafim M, Company R, Bebianno M, Langston W: Effect of temperature and size on metallothionein synthesis in the gill of Mytilus galloprovincialis exposed to cadmium. Mar Environ Res 2002, 54(3-5):361-365. [http://www.sciencedirect.com/science/article/pii/S0141113602001216 webcite]
  • [45]Piano A, Valbonesi P, Fabbri E: Expression of cytoprotective proteins, heat shock protein 70and metallothioneins, in tissues of Ostrea edulis exposed to heat andheavy metals. Cell Stress Chaperones 2004, 9(2):134-142. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065293/ webcite] [PMID: 15497500 PMCID: PMC1065293]
  • [46]Knipp M: Metallothioneins and platinum(II) anti-tumor compounds. Curr Med Chem 2009, 16(5):522-537.
  • [47]Ponder WF, Colgan DJ, Healy JM, NÃijtzel A, Simone LRL, Strong EE: Caenogastropoda. In Phylogeny and evolution of the Mollusca. Edited by Ponder W F, Ponder W F, Lindberg DR. Berkeley: University of California Press; 2008.
  • [48]Wägele H, Klussmann-Kolb A: Opisthobranchia (Mollusca, Gastropoda) – more than just slimy slugs. Shell reduction and its implications on defence and foraging. Front Zool 2005, 2:3. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC554092/ webcite] [PMID: 15715915 PMCID: PMC554092] BioMed Central Full Text
  • [49]Switzer-Dunlap M, Hadfield MG: Observations on development, larval growth and metamorphosis of four species of Aplysiidae (GastropodaOpisthobranchia) in laboratory culture. J Exp Mar Biol Ecol 1977, 29(3):245-261. [http://www.sciencedirect.com/science/article/pii/0022098177900697 webcite]
  • [50]Schmekel L, Portmann A: Opisthobranchia des Mittelmeeres: Nudibranchia und Saccoglossa. Berlin: Springer-Verlag; 1982.
  • [51]Kükel K: Zur Biologie der Lungenschnecken: Ergebnisse vieljÃďhriger Züchtungen und Experimente. Heidelberg: Winter; 1916.
  • [52]Simpson GB: Anatomy and physiology of Polygyra albolabris and Limax maximus and Embryology of Limax maximus Albany University of the State of New York. Cornell University Library 1901. [http://archive.org/details/cu31924001030612 webcite]
  • [53]Furbish DR, Furbish WJ: Structure, crystallography, and morphogenesis of the cryptic shell of the terrestrial slug Limax maximus (Mollusca, Gastropoda). J Morphol 1984, 180(3):195-211.
  • [54]Kröger B, Vinther J, Fuchs D: Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules. Bioessays 2011, 33(8):602-613.
  • [55]Nishiguchi MK, Mapes RH: Cephalopoda. In Phylogeny and Evolution of the Mollusca. Edited by Lindberg DR, Ponder W F, Ponder W F, Lindberg DR. Berkeley: University of California Press; 2008.
  • [56]Bandel K: Cephalopod shell structure and general mechanisms of shell formation. Short Course Geol Ser 1989, 5:97-115. [http://www.agu.org/books/sc/v005/SC005p0097/SC005p0097.shtml webcite]
  • [57]Cason JE: A rapid one-step Mallory-Heidenhain stain for connective tissue. Biotech Histochem 1950, 25(4):225-226.
  文献评价指标  
  下载次数:0次 浏览次数:10次