期刊论文详细信息
BMC Evolutionary Biology
Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans
Kirk W Deitsch2  John W Stiller1  Sandeep P Kishore2 
[1] Department of Biology, East Carolina University, Greenville, NC, 27858, USA;Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
关键词: Horizontal gene transfer;    SET domain;    Parasitism;    Transcription;    Apicomplexa;    Plasmodium;    Protozoa;   
Others  :  1129940
DOI  :  10.1186/1471-2148-13-37
 received in 2012-09-05, accepted in 2013-02-05,  发布年份 2013
PDF
【 摘 要 】

Background

The acquisition of complex transcriptional regulatory abilities and epigenetic machinery facilitated the transition of the ancestor of apicomplexans from a free-living organism to an obligate parasite. The ability to control sophisticated gene expression patterns enabled these ancient organisms to evolve several differentiated forms, invade multiple hosts and evade host immunity. How these abilities were acquired remains an outstanding question in protistan biology.

Results

In this work, we study SET domain bearing genes that are implicated in mediating immune evasion, invasion and cytoadhesion pathways of modern apicomplexans, including malaria parasites. We provide the first conclusive evidence of a horizontal gene transfer of a Histone H4 Lysine 20 (H4K20) modifier, Set8, from an animal host to the ancestor of apicomplexans. Set8 is known to contribute to the coordinated expression of genes involved in immune evasion in modern apicomplexans. We also show the likely transfer of a H3K36 methyltransferase (Ashr3 from plants), possibly derived from algal endosymbionts. These transfers appear to date to the transition from free-living organisms to parasitism and coincide with the proposed horizontal acquisition of cytoadhesion domains, the O-glycosyltransferase that modifies these domains, and the primary family of transcription factors found in apicomplexan parasites. Notably, phylogenetic support for these conclusions is robust and the genes clearly are dissimilar to SET sequences found in the closely related parasite Perkinsus marinus, and in ciliates, the nearest free-living organisms with complete genome sequences available.

Conclusions

Animal and plant sources of epigenetic machinery provide new insights into the evolution of parasitism in apicomplexans. Along with the horizontal transfer of cytoadhesive domains, O-linked glycosylation and key transcription factors, the acquisition of SET domain methyltransferases marks a key transitional event in the evolution to parasitism in this important protozoan lineage.

【 授权许可】

   
2013 Kishore et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226134256896.pdf 1594KB PDF download
Figure 5. 47KB Image download
Figure 4. 110KB Image download
Figure 3. 90KB Image download
Figure 2. 68KB Image download
Figure 1. 225KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Cavalier-Smith T: Kingdom protozoa and its 18 phyla. Microbiol Rev 1993, 57:953-994.
  • [2]Kishore SP, Perkins SL, Templeton TJ, Deitsch KW: An unusual recent expansion of the C-terminal domain of RNA polymerase II in primate malaria parasites features a motif otherwise found only in mammalian polymerases. J Mol Evol 2009, 68:706-714.
  • [3]Balaji S, Babu MM, Iyer LM, Aravind L: Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res 2005, 33:3994-4006.
  • [4]Seeber F, Soldati-Favre D: Metabolic pathways in the apicoplast of apicomplexa. Int Rev Cell Mol Biol 2010, 281:161-228.
  • [5]Lim L, McFadden GI: The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond B Biol Sci 2010, 365:749-763.
  • [6]Templeton TJ, Iyer LM, Anantharaman V, Enomoto S, Abrahante JE, Subramanian GM, et al.: Comparative analysis of apicomplexa and genomic diversity in eukaryotes. Genome Res 2004, 14:1686-1695.
  • [7]Templeton TJ: Whole-genome natural histories of apicomplexan surface proteins. Trends Parasitol 2007, 23:205-212.
  • [8]Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al.: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002, 419:498-511.
  • [9]Dillon SC, Zhang X, Trievel RC, Cheng X: The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 2005, 6:227. BioMed Central Full Text
  • [10]Crowley VM, Rovira-Graells N, Ribas dP, Cortes A: Heterochromatin formation in bistable chromatin domains controls the epigenetic repression of clonally variant Plasmodium falciparum genes linked to erythrocyte invasion. Mol Microbiol 2011, 80:391-406.
  • [11]Jiang L, Lopez-Barragan MJ, Jiang H, Mu J, Gaur D, Zhao K, et al.: Epigenetic control of the variable expression of a Plasmodium falciparum receptor protein for erythrocyte invasion. Proc Natl Acad Sci U S A 2010, 107:2224-2229.
  • [12]Chookajorn T, Dzikowski R, Frank M, Li F, Jiwani AZ, Hartl DL, et al.: Epigenetic memory at malaria virulence genes. Proc Natl Acad Sci U S A 2007, 104:899-902.
  • [13]Dzikowski R, Deitsch KW: Active transcription is required for maintenance of epigenetic memory in the malaria parasite Plasmodium falciparum. J Mol Biol 2008, 382:288-297.
  • [14]Lopez-Rubio JJ, Mancio-Silva L, Scherf A: Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 2009, 5:179-190.
  • [15]Flueck C, Bartfai R, Volz J, Niederwieser I, Salcedo-Amaya AM, Alako BT, et al.: Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog 2009, 5:e1000569.
  • [16]Sautel CF, Cannella D, Bastien O, Kieffer S, Aldebert D, Garin J, et al.: SET8-mediated methylations of histone H4 lysine 20 mark silent heterochromatic domains in apicomplexan genomes. Mol Cell Biol 2007, 27:5711-5724.
  • [17]Cui L, Fan Q, Cui L, Miao J: Histone lysine methyltransferases and demethylases in Plasmodium falciparum. Int J Parasitol 2008, 38:1083-1097.
  • [18]Hampsey M, Reinberg D: Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 2003, 113:429-432.
  • [19]Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, et al.: Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 2010, 59:518-533.
  • [20]Okamato N: The mother of all parasites. Future Microbiol 2008, 3:391-395.
  • [21]Coghlan A: Nematode genome evolution. In The WormBook. The C.elegans Research Community. Wormbook,  ; 2005. WormBook, http://dx.doi.org//10.1895/wormbook.1.7.1 webcite, http://www.wormbook.org webcite.
  • [22]Kim T, Buratowski S: Two Saccharomyces cerevisiae JmjC domain proteins demethylate histone H3 Lys36 in transcribed regions to promote elongation. J Biol Chem 2007, 282:20827-20835.
  • [23]Zhang L, Ma H: Complex evolutionary history and diverse domain organization of SET proteins suggest divergent regulatory interactions. New Phytol 2012, 195:248-263.
  • [24]Letunic I, Doerks T, Bork P: SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 2012, 40:D302-D305.
  • [25]Bodyl A, Stiller JW, Mackiewicz P: Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 2009, 24:119-121.
  • [26]Sanchez-Puerta MV, Delwiche CF: A hypothesis for plastid evolution in chromalveolates. J Phycol 2008, 44:1097-1107.
  • [27]Jorgensen S, Elvers I, Trelle MB, Menzel T, Eskildsen M, Jensen ON, et al.: The histone methyltransferase SET8 is required for S-phase progression. J Cell Biol 2007, 179:1337-1345.
  • [28]Huen MS, Sy SM, van Deursen JM, Chen J: Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J Biol Chem 2008, 283:11073-11077.
  • [29]Couture JF, Collazo E, Brunzelle JS, Trievel RC: Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes Dev 2005, 19:1455-1465.
  • [30]Deitsch KW, Driskill CL, Wellems TE: Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res 2001, 29:850-853.
  • [31]Anantharaman V, Iyer LM, Balaji S, Aravind L: Adhesion molecules and other secreted host-interaction determinants in Apicomplexa: insights from comparative genomics. Int Rev Cytol 2007, 262:1-74.
  • [32]Kessin RH, Gundersen GG, Zaydfudim V, Grimson M: How cellular slime molds evade nematodes. Proc Natl Acad Sci U S A 1996, 93:4857-4861.
  • [33]Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, et al.: The genome of the social amoeba Dictyostelium discoideum. Nature 2005, 435:43-57.
  • [34]Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, et al.: Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 2011, 12:R20. BioMed Central Full Text
  • [35]Brock DA, Douglas TE, Queller DC, Strassmann JE: Primitive agriculture in a social amoeba. Nature 2011, 469:393-396.
  • [36]Cunningham D, Fonager J, Jarra W, Carret C, Preiser P, Langhorne J: Rapid changes in transcription profiles of the Plasmodium yoelii yir multigene family in clonal populations: lack of epigenetic memory? PLoS One 2009, 4:e4285.
  • [37]Strassmann JE, Zhu Y, Queller DC: Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 2000, 408:965-967.
  • [38]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [39]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [40]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [41]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  文献评价指标  
  下载次数:45次 浏览次数:6次